
Oliver Kopp, Niels Lohmann (Eds.)

Services and their Composition

5th Central European Workshop, ZEUS 2013

Rostock, Germany, 21–22 February 2013

Proceedings



Volume Editors

Oliver Kopp
Universität Stuttgart, Institut für Architektur von Anwendungssystemen
Universitätsstraße 38, 70569 Stuttgart, Deutschland
oliver.kopp@iaas.uni-stuttgart.de

Niels Lohmann
Universität Rostock, Institut für Informatik
18051 Rostock, Germany
niels.lohmann@informatik.uni-rostock.de



Preface

After five years, the Central European Workshop on Services and their Composi-
tion (ZEUS) still isn’t a classical workshop, where finished scientific results are
presented and published. The discussion of ideas being in a first stage remains
the focus of ZEUS. We happily perceived that past ZEUS submissions have been
extended and got accepted at major conferences. There were also researchers
who met on ZEUS and collaboratively published conference papers. We hope
that also this year’s ZEUS will also foster collaboration of different institutions.

Due to the movement of services into the Cloud, we have broadened the scope
of ZEUS to Cloud-enabled applications and RESTful systems. In this year’s
ZEUS edition, we accepted 10 submissions of which 2 honored the extension of
the scope and 8 followed the established scope of ZEUS. We thank all authors
for their contributions and look forward to fruitful discussions on the workshop.

Stuttgart/Rostock, February 2013 Oliver Kopp
Niels Lohmann



Organization

Program Committee Co-chairs

Oliver Kopp Universität Stuttgart, Germany
Niels Lohmann Universität Rostock, Germany

Program Committee

Rafael Accorsi University of Freiburg, Germany
Dirk Fahland Technische Universiteit Eindhoven,

The Netherlands
Christian Gierds Humboldt-Universität zu Berlin, Germany
Thomas Heinze Friedrich Schiller University of Jena, Germany
Meiko Jensen Independent Centre for Privacy and Data Pro-

tection Schleswig-Holstein, Germany
Agnes Koschmider Karlsruher Institute of Technology, Germany
Matthias Kunze Hasso Plattner Institute at the University of

Potsdam, Germany
Andreas Lehmann Universität Rostock, Germany
Philipp Leitner Vienna University of Technology, Austria
Henrik Leopold Humboldt-Universität zu Berlin, Germany
Stephan Reiff-Marganiec University of Leicester, UK
Thomas Ruhroth TU Dortmund, Germany
Andreas Schönberger Universtität Bamberg, Germany
Silvia Schreier FernUniversität in Hagen, Germany
Christian Stahl Technische Universiteit Eindhoven

The Netherlands
Thomas Stocker University of Freiburg, Germany
Jan Sürmeli Humboldt-Universitaet zu Berlin, Germany
Ruben Verborgh Universiteit Gent, Belgium
Matthias Weidlich Technion – Israel Institute of Technology, Israel
Andreas Wombacher University of Twente, The Netherlands
Marco Zapletal Vienna University of Technology, Austria

Steering Committee

Oliver Kopp Universität Stuttgart, Germany
Niels Lohmann Universität Rostock, Germany
Karsten Wolf Universität Stuttgart, Germany



Table of Contents

Control Flow Unfolding of Workflow Graphs Using Predicate Analysis
and SMT Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Thomas Heinze, Wolfram Amme, and Simon Moser

Consolidation of Interacting BPEL Process Models with Fault Handlers . . 9
Sebastian Wagner, Oliver Kopp, and Frank Leymann

Business Process Mining for Collaborative Service-Oriented Systems –
“Duality” of Process Representations and the Need for Statistical Treatment 17

Jörg Becker and Dominic Breuker

Improving Process Monitoring and Progress Prediction with Data State
Transition Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Nico Herzberg and Andreas Meyer

Improving Portability of Cloud Service Topology Models Relying on
Script-Based Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Johannes Wettinger, Oliver Kopp, and Frank Leymann

Towards Integrating TOSCA and ITIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Christoph Demont, Uwe Breitenbücher, Oliver Kopp, Frank Leymann,
and Johannes Wettinger

Fast Soundness Verification of Workflow Graphs . . . . . . . . . . . . . . . . . . . . . . 31
Thomas Prinz

Detecting Interoperability and Correctness Issues in BPMN 2.0 Process
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Matthias Geiger and Guido Wirtz

A new approach for WS-Policy Intersection using Partial Ordered Sets . . . 43
Abeer Elsafie, Christian Mainka, and Jörg Schwenk

Goal-Oriented Enterprise Architecture Analysis . . . . . . . . . . . . . . . . . . . . . . . 47
Evellin Cardoso



Control Flow Unfolding of Workflow Graphs

Using Predicate Analysis and SMT Solving

Thomas S. Heinze1, Wolfram Amme1, and Simon Moser2

1 Friedrich Schiller University of Jena
[t.heinze,wolfram.amme]@uni-jena.de

2 IBM Research & Development Boeblingen
smoser@de.ibm.com

Abstract. We present an extension of our previously introduced tech-
nique for unfolding conditional control flow in extended workflow graphs.
This technique allows for a more precise process-to-Petri-net-mapping
which is crucial for business process verification. Our new technique de-
rives data flow information about the state space of process data by
means of predicate clauses using a novel CSSA-Form-based analysis. The
derived information is then exploited in an adjusted unfolding algorithm
to resolve conditional control flow utilising the SMT solver YICES.

1 Introduction

Verification of business processes today is typically done using Petri-net-based
process models, which allows for a natural modeling and analysis of vital as-
pects like parallelism and message exchange. The quality of verification thereby
strongly depends on the precision of the process-to-Petri-net mapping. In par-
ticular, there exists an inherent tradeo↵ between verification e↵ectivity and pre-
cision, as typical properties for business process verification, e.g., soundness or
controllability, are in general undecidable for full-specified business processes.

For this reason, more often than not, methods for business process verifica-
tion omit process data so that the used Petri-net-based process models merely
represent the processes’ (unconditional) control flow. By this means, the condi-
tional control flow of a process, i.e., its data-dependent branchings and loops,
is mapped to nondeterminism which only over-approximates the process’s ac-
tual behaviour (under the fairness assumption). However, as research has shown
lately, such an approach comprises the danger of an erroneous verification, by
means of both, false-positive and false-negative verification results [3, 9, 11].

In order to tackle this problem, in our previous work [3, 4], we have developed
a control flow unfolding technique which allows for an increase in the precision
of the process-to-Petri-net mapping. More specifically, the technique developed
transforms certain kinds of conditional control flow into unconditional control
flow for a business process, without inferring the process’s execution semantics.
As a result, when mapping a thus preprocessed process to its Petri net model,
there is no need to over-approximate conditional control flow using nondetermin-
ism and therefore no possible source of error for verification. In other words, we



2 Thomas Heinze, Wolfram Amme, and Simon Moser

have envisioned a compiler, which takes as input a business process and generates
as output a Petri net for the process. However, in contrast to a conventional com-
piler, its objective is not to result e�cient runtime code but rather to produce
a most-precise though still e↵ectively verifiable Petri-net-based process model.

Our previous technique exploited data flow information derived by copy prop-
agation [3], i.e., information about constant values, or value range analysis [4],
i.e., value ranges for integers, to unfold a process’s conditional control flow. In
this work, we will sketch a new CSSA-Form-based analysis for gaining a more
general representation for the state space of process data in terms of predicate
clauses and how the such derived information is then used to integrate a SMT

solver into our unfolding approach, so that its applicability is further widened.
The remainder of the paper is structured as follows: The following section

introduces the example process which is used for illustration throughout the
paper. In Section 3, we describe the CSSA-Form-based analysis to derive predi-
cate clauses. The use of the thus derived data flow information in our adjusted
control flow unfolding technique is explained in Section 4. Finally, after a brief
discussion of related work in Section 5, Section 6 concludes the paper.

2 Running Example: Rock-paper-scissors

For illustration, we will use the example shown in Figure 1. On its upper left-
hand side, a (business) process is shown in a textual format. The process models
the game Rock-paper-scissors, where two partners (A and B) play against each
other. The idea is, that each player decides whether to take one of the three
items: rock, paper, scissors. If A takes scissors and B paper, A takes paper and
B rock, or A takes rock and B scissors, player A wins the game and vice versa.
If both players take the same item, the game continues with another round.

In order to implement the game, the three items are encoded in the process by
using three integers, i.e., scissors becomes 0, paper becomes 1, rock becomes 2. In
consequence, the decision whether player A, who has chosen $a, won over player
B, who has chosen $b, can be done based on the expression ($a + 1) mod 3 = $b

and vice versa. Therefore, the process contains a loop which tests if A and B

chose the same item. If so, the loop continues and another round is played. In the
loop, A and B state their choice by sending an integer to the process, which is
encoded into either 0, 1, or 2. Afterwards, the winner is determined, if existent,
using two conditional branchings and an appropriate message is sent back.

When verifying this process with regard to controllability [5], i.e., whether
partners A and B exists for which the process will always be able to terminate
its execution, the process is mapped to a Petri-net-based process model first.
Using one of the conventional methods results in a Petri net similar to the
one shown on the upper right-hand side of Figure 1. Note that the loop and
conditional branchings are therein mapped to conflicting transitions modeling
nondeterminism. Thus, verifying the process based on this process model results
in the erroneous finding that the process is not controllable, while it rather is.



Control Flow Unfolding of Workflow Graphs 3

$a = 0
$b = 0
While ($a = $b) do

$a = Receive A

$a = $a mod 3
$b = Receive B

$b = $b mod 3
If (($a + 1) mod 3 = $b) then

Reply A Wins

else

If (($b + 1) mod 3 = $a) then

Reply B Wins

else

Reply Repeat Game

end

end

end

(a) Process

B

A

start

B Wins

final

A Wins Game
Repeat

(b) Petri Net Model

Assertion

Assertion B Wins

A Wins

$a  = $b1 1

Initialize

else

Φ 6

Φ 6 7$a  =    ($a  , $a  )8

8$b  =    ($b  , $b  )7

Receive

else Assertion

else

5($b  +1) mod 3 = $a5

$a  = assert ($a  , ($b  +1) mod 3 = $a  )
$b  = assert ($b  , ($b  +1) mod 3 = $a  )

6

6

5

5

5 5

55

($a  +1) mod 3 = $b3 3

$a  = assert ($a  , ($b  +1) mod 3    $a  )
$b  = assert ($b  , ($b  +1) mod 3   $a  )

7

7 5

5

5

5 5≠

≠ 5

$a  = assert ($a  , ($a  +1) mod 3    $b  )
$b  = assert ($b  , ($a  +1) mod 3   $b  )

5

5 3

3

3

3 3≠

≠ 3

$a  = assert ($a  , ($a  +1) mod 3 = $b  )
$b  = assert ($b  , ($a  +1) mod 3 = $b  )

4

4

3

3 33

3 3
Φ

Φ 84

8$b  =    ($b  , $b  )
$a  =    ($a  , $a  )9

9 4

Φ

Φ$a  =    ($a  , $a  )1

1

0
$b  =    ($b  , $b  )0 9

9
Assertion

$a  = Receive A2

3$a  = $a   mod 32
$b  = Receive B2

3$b  = $b  mod 32

Repeat
Game

$b  = 0
$a  = 00

0

(c) Extended Workflow Graph

Fig. 1. Running example: Process, Petri net model, and extended workflow graph

3 Predicate Clause Analysis

Using control flow unfolding as described in [3, 4], allows for resolving certain
kinds of conditional control flow such that nondeterminism can be avoided in a
process’s Petri net model. To this end, data flow information is derived and used
to identify control flow paths where a loop or branching condition is statically
evaluable based on the gained information. These control flow paths are then
made explicit, i.e., unfolded, and, as a result, the condition can be removed.

In order to derive data flow information about process data, we use extended

workflow graphs [3]. Workflow graphs provide a well-known format to model the
control flow structure of a process. For the representation of process data, work-
flow graphs are enriched by annotating nodes and edges with instructions and
condition expressions in Concurrent Static Single Assignment (CSSA-) Form [1],



4 Thomas Heinze, Wolfram Amme, and Simon Moser

which benefits analysis. The such defined extended workflow graph for our exam-
ple process is shown at the bottom of Figure 1. Note that the process’s variables
are therein (statically) defined only once such that variables become values,
which is denoted by subscripts, e.g., $a becomes $a0, . . . , $a9. In order to merge
conflicting variable definitions into a single value, �-functions are used, as is done
for variable $a’s and $b’s definitions, e.g., $a1 = �($a0, $a9). Further, several as-

sertions have been added exposing the induced constraints for a value referenced
in a condition expression, e.g., $a4 = assert($a3, ($a3 +1) mod 3 = $b3) guaran-
tees for all subsequent uses of value $a3, which have been renamed to $a4, that
its value satisifies the branching condition ($a3 + 1) mod 3 = $b3.

For the example process, data flow information resulting from constant prop-
agation or value range analysis does not help control flow unfolding. In contrast,
we here employ a novel analysis, based on the CSSA-Form-based analysis frame-
work described in [1], which produces predicates for determining the state space
of process data. Thereby, predicates denote instructions or condition expressions
as they appear in the process’s extended workflow graph. Sets of predicates are
meant to denote conjunctions of predicates, so-called predicate clauses, as they
hold on a single control flow path. Elements of the power set of sets of predicates,
in terms of a disjunction, merge information over multiple control flow paths.

In the following, let V ariables denote the set of variables and Predicates the
set of instructions and condition expressions appearing in an extended workflow
graph. Predicates is augmented with instructions in {x = y | x, y 2 V ariables}.
Function var(pred) returns the set of contained variables for pred 2 Predicates.
Then, for each variable v, we estimate its state space in terms of sets of predicate
clauses inf(v) using the following CSSA-based data flow equations:

Incoming Message If variable v is defined by incoming message activity, e.g.,
Receive, the result is the singleton set inf(v) = {;}

Constant Assignment If variable v is defined by constant assignment, i.e.,
v = c, the result is the singleton set inf(v) = {{v = c}}

General Assignment If variable v is defined by expression assignment, i.e.,
v = expr with var(expr) = {x1, . . . , xn

}, the result is:

inf(v) =
[

k12inf(x1),...,kn2inf(xn)

{k1 \ kill(v)[ . . .[ k

n

\ kill(v)[ {v = expr}}

Assertion If variable v is defined by assertion, i.e., v = assert(x, pred) with
var(pred) = {x1, . . . , xn

}, the result is:

inf(v) =
[

k12inf(x1),...,kn2inf(xn)

{k1\kill(v)[. . .[k

n

\kill(v)[{pred, v = x}}

�-/⇡-Function If variable v is defined by �-/⇡-function, i.e., v = �(x1, . . . , xn

)
or v = ⇡(x1, . . . , xn

), the result is:

inf(v) =
[

ki2inf(xi)

{k
i

\ kill(v) [ {v = x

i

}}

where kill(v) = {pred 2 Predicates | v 2 var(pred)} for all v 2 V ariables.



Control Flow Unfolding of Workflow Graphs 5

Applying the analysis to the example process then results for variable $a1:

{ { $a0 = 0 , $a1 = $a0 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 = $b3 , $a4 = $a3,

$a9 = $a4 , $a1 = $a9 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 = $a5, $a6 = $a5, $a8 = $a6, $a9 = $a8, $a1 = $a9 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 +1) mod 3 6= $a5, $a7 = $a5, $a8 = $a7, $a9 = $a8, $a1 = $a9 } }

and for variable $b1:

{ { $b0 = 0 , $b1 = $b0 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 = $b3 , $b4 = $b3,

$b9 = $b4 , $b1 = $b9 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 = $a5, $b6 = $b5, $b8 = $b6, $b9 = $b8, $b1 = $b9 },
{ $a3 = $a2 mod 3 , $b3 = $b2 mod 3 , ($a3 + 1) mod 3 6= $b3 , $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 6= $a5, $b7 = $b5, $b8 = $b7, $b9 = $b8, $b1 = $b9 } }

Note that the �-functions and assertions are included by means of simple as-
signments, each copying the respective operand’s value to the function value.

4 Control Flow Unfolding

Having done the analysis, the derived data flow information, i.e., predicate
clauses, can be tested for enabling the evaluation of conditional control flow.
Therefore, given a branching or loop condition, a SMT solver, in our case
YICES

3, is used to check, on the one hand, whether a conjunction of certain
predicate clauses for variables referenced in the condition is satisfiable (otherwise
it would represent an infeasible path and can be neglected) and, on the other
hand, whether the conjunction implies the condition to be either true or false.
In the latter, the condition can be statically evaluated for this specific set of
predicate clauses and is thus a candidate for control flow unfolding.

In the example process, the loop with condition $a1 = $b1 is such a candidate
for unfolding, i.e., the control flow path which is denoted by the predicate clause
{$a3 = $a2 mod 3, $b3 = $b2 mod 3, ($a3 + 1) mod 3 6= $b3, $a5 = $a3, $b5 = $b3,

($b5 + 1) mod 3 6= $a5, $a7 = $a5, $a8 = $a7, $a9 = $a8, $a1 = $a9} for variable $a1

and the clause {$a3 = $a2 mod 3, $b3 = $b2 mod 3, ($a3 + 1) mod 3 6= $b3, $a5 = $a3,

$b5 = $b3, ($b5 + 1) mod 3 6= $a5, $b7 = $b5, $b8 = $b7, $b9 = $b8, $b1 = $b9} for
variable $b1 is a feasible path since the conjunction of both clauses is satisfiable.
Further, the conjunction of the clauses also implies the loop condition $a1 = $b1

always to be satisfied, as can be checked using YICES:
|= ($a3 = $a2 mod 3 ^ $b3 = $b2 mod 3 ^ ($a3 + 1) mod 3 6= $b3 ^ $a5 = $a3

^ $b5 = $b3 ^ ($b5 + 1) mod 3 6= $a5 ^ $a7 = $a5 ^ $b7 = $b5 ^ $a8 = $a7

^ $b8 = $b7 ^ $a9 = $a8 ^ $b9 = $b8 ^ $a1 = $a9 ^ $b1 = $b9)! $a1 = $b1

3
http://yices.csl.sri.com



6 Thomas Heinze, Wolfram Amme, and Simon Moser

Assertion B Wins

A Wins

Receive

A Wins

Receive

$a  = assert ($a  , ($b  +1) mod 3 = $a  )
$b  = assert ($b  , ($b  +1) mod 3 = $a  )

6

6

5

5

5 5

55

($a  +1) mod 3 = $b3 3

$a  = assert ($a  , ($a  +1) mod 3 = $b  )
$b  = assert ($b  , ($a  +1) mod 3 = $b  )

4

4

3

3 33

3 3

Assertion
Initialize

Assertion B Wins5($b  +1) mod 3 = $a5

else Assertion

Assertionelse Repeat
Game

$a  = assert ($a  , ($b  +1) mod 3    $a  )7 55 5≠

$b  = assert ($b  , ($b  +1) mod 3   $a  )7 5 5 ≠ 5

$a  = assert ($a  , ($a  +1) mod 3    $b  )
$b  = assert ($b  , ($a  +1) mod 3   $b  )

5

5 3

3

3

3 3≠

≠ 3

$a  = Receive A2

3$a  = $a   mod 3
$b  = Receive B2

3$b  = $b  mod 3

2

2

Φ

Φ1

1

4
$b  =    ($b  , $b  , $b    , $b   )4 6

6

10

10

11

Φ

Φ$b     =    ($b  , $b    )7

7

($b    +1) mod 3 = $a12

13

1311

$a  =    ($a  , $a  , $a    , $a    )

12

$a    =    ($a  , $a    )14

14

($a  +1) mod 3 = $b9 9

$a    = assert ($a  , ($a  +1) mod 3 = $b  )
$b    = assert ($b  , ($a  +1) mod 3 = $b  )

11

11

9 9 9

9 9 9

Assertion

$b    = assert ($b    , ($b    +1) mod 3 = $a    )13 12 12 12

$a    = assert ($a    , ($b    +1) mod 3 = $a    )13 12 12 12

$b  = 0
$a  = 00

0

else Assertion

Assertionelse Repeat
Game

≠
14 12 12

$b    = assert ($b    , ($b    +1) mod 3   $a    )14 12 12

12

12

≠$a    = assert ($a    , ($b    +1) mod 3   $a    )12

12 ≠$b    = assert ($b  , ($a  +1) mod 3   $b  )
≠9

9 9

$a    = assert ($a  , ($a  +1) mod 3    $b  )9 9

9

$a  = Receive A8

9$a  = $a   mod 38
$b  = Receive B8

9$b  = $b  mod 38

Fig. 2. Extended workflow graph with unfolded loop

Since the derived predicate clauses make it possible to evaluate the loop con-
dition to either true or false for all control flow paths in the example process,
the loop can be e↵ectively transformed such that the loop condition is removed.
To this end, the control flow paths which are associated to the individual pred-
icate clauses are made explicit by dissolving merge nodes joining these paths
through subgraph duplication. In particular, the loop is replaced by copies of it,
so-called loop instances, based on the derived predicate clauses which therefore
act as a kind of invariant for the values of variables $a1 and $b1. For instance,
predicate clauses {$a0 = 0, $a1 = $a0} and {$b0 = 0, $b1 = $b0} constitute the
invariant $a0 = 0 ^ $a1 = $a0 ^ $b0 = 0 ^ $b1 = $b0 which holds for the first loop
iteration and allows for evaluating the loop condition to true therein. Thus, the
loop condition can be evaluated in each loop instance and afterwards replaced
by unconditional control flow to the loop exit or to the same or another instance.

For conducting the above described control flow unfolding technique, an ad-
justed version of the algorithm described in [4] is used, which works with pred-
icate clauses as data flow information and evaluates loop and branching condi-
tions by the help of SMT solver YICES. Applying this algorithm to the loop in
the example process results in the extended workflow graph shown in Figure 2.
As can be seen, the loop is therein unfolded into two loop instances such that



Control Flow Unfolding of Workflow Graphs 7

start

B

A

B WinsA Wins Game
Repeat

B

A

B WinsA Wins Game
Repeat

final

Fig. 3. Refined Petri net model

the loop condition has been eventually resolved. Mapping the thus successfully
unfolded process to a Petri-net-based process model yields the Petri net shown in
Figure 3. Verifying the process in respect of controllability based on this refined
process model then comes to the correct result that the process is controllable.

5 Related Work

The relevance of process data when verifying business processes based on Petri
nets is an ongoing research topic. Nevertheless, most approaches to a process-
to-Petri-net-mapping either omit data entirely our restrict themselves to data
of bounded and limited domain [5, 6, 9]. Using high-level Petri nets allows for
augmenting the process model with (unbounded) data, for which verification
methods have been proposed in respect of acyclic processes [7, 10]. However, the
application of high-level nets in general leads to undecidability in case of cyclic
control flow, and even if data is bounded, state space explosion may hinder a
feasible verification. This also applies if high-level nets are unfolded into low-
level Petri nets, since an infinite data domain implies an infinite low-level net. In
contrast, our unfolding technique always terminates with a finite process model.

Predicate abstraction is a well-known method for providing a verifiable model
of infinite systems [2]. Using this method, a system of infinite concrete states is
mapped to a system of finite abstract states for a given set of predicates. Thus,
the abstract system can then be subject to verification. Yet, choosing predicates
for abstraction is rather hard. On the contrary, in our approach, predicates are
automatically derived. Further, our unfolding technique rather works on the
concrete system, i.e., the extended workflow graph of a business process.

A method to integrate SMT solving in the Petri-net-based verification of
business processes has been already described in [8]. However, this approach is
also restricted to acyclic processes since the termination of the such extended
verification method in the presence of cyclic control flow is not guaranteed.



8 Thomas Heinze, Wolfram Amme, and Simon Moser

6 Conclusion

In this paper, we presented an extension of our previous technique [4], which
allows us to unfold certain kinds of a business process’s conditional into uncon-
ditional control flow such that a precise mapping of the process to its Petri net
model is not impeded by the introduction of nondeterminism. In our previous
work, we have based the control flow unfolding on data flow information derived
by copy propagation or value range analysis. In order to enlargen the number of
cases our technique is e↵ectively applicable, we now employ a CSSA-based anal-
ysis for deriving predicates determining the state space of process data, which
are then used in combination with a SMT solver to conduct the unfolding.

In a current prototype, we have implemented the unfolding technique for a
subset of the WS-BPEL language based on value range information. We plan
to integrate the predicate clause analysis and adjusted unfolding algorithm de-
scribed here into this prototype. Building on that, the thorough evaluation of
the control flow unfolding approach remains the main issue for future work.

References

1. Amme, W., Martens, A., Moser, S.: Advanced verification of distributed ws-bpel
business processes incorporating cssa-based data flow analysis. Int. J. Business
Process Integration and Management 4(1), 47–59 (2009)

2. Graf, S., Säıdi, H.: Construction of abstract state graphs with pvs. In: Grumberg,
O. (ed.) CAV. LNCS, vol. 1254, pp. 72–83. Springer (1997)

3. Heinze, T.S., Amme, W., Moser, S.: A restructuring method for ws-bpel business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM. LNCS, vol. 5701, pp. 211–228. Springer (2009)

4. Heinze, T.S., Amme, W., Moser, S., Gebhardt, K.: Guided control flow unfolding
for workflow graphs using value range information. In: Schönberger, A., Kopp, O.,
Lohmann, N. (eds.) ZEUS. CEUR Workshop Proceedings, vol. 847, pp. 128–135.
CEUR-WS.org (2012)

5. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting ws-bpel
processes using flexible model generation. Data Knowl. Eng. 64(1), 38–54 (2008)

6. Lohmann, N., Verbeek, H., Ouyang, C., Stahl, C.: Comparing and evaluating petri
net semantics for bpel. Int. J. Business Process Integration and Management 4(1),
60–73 (2009)

7. Lohmann, N., Wolf, K.: Data under control. In: AWPN. pp. 34–40 (2011)
8. Monakova, G., Kopp, O., Leymann, F.: Improving control flow verification in a

business process using an extended petri net. In: Kopp, O., Lohmann, N. (eds.)
ZEUS. CEUR Workshop Proceedings, vol. 438, pp. 95–101. CEUR-WS.org (2009)

9. Sidorova, N., Stahl, C., Trcka, N.: Soundness verification for conceptual workflow
nets with data: Early detection of errors with the most precision possible. Inf. Syst.
36(7), 1026–1043 (2011)

10. Wagner, C.: A data-centric approach to deadlock elimination in business processes.
In: Eichhorn, D., Koschmider, A., Zhang, H. (eds.) ZEUS. CEUR Workshop Pro-
ceedings, vol. 705, pp. 104–111. CEUR-WS.org (2011)

11. Weißbach, M., Zimmermann, W.: Termination analysis of business process work-
flows. In: Binder, W., Schuldt, H. (eds.) WEWST. pp. 18–25. ACM (2010)



Consolidation of Interacting BPEL Process Models with
Fault Handlers

Sebastian Wagner, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{wagnerse,kopp,leymann}@iaas.uni-stuttgart.de

Abstract The interaction behavior between processes of organizations and their
suppliers can be modeled by using choreographies. When an organization decides
to gain more control about their suppliers and to minimize transaction costs they
may decide to insource these companies. This also requires the integration of
the partner processes into the organization. In previous work we proposed an
approach to merge (consolidate) interacting BPEL process models of different
partners into a single process model by deriving control flow links between the
process models from their interaction specification. In this work we are detailing
this consolidation approach. Thereby, special attention is turned on extending the
consolidation operations in a way that process models with fault handlers can be
merged.

1 Introduction

To reduce transaction costs or to gain more control companies often decide to integrate
suppliers into their organization (in-sourcing, mergers, and acquisitions). This requires
the integration of the organizational structure and also the integration of the processes of
the two companies. In this work we focus on the integration on the process-level. More
precisely, we want to merge (or consolidate) complementing process models whose
interaction behavior is described by a choreography.

Process modeling languages such as BPEL [10] or BPMN [11] offer different
language constructs to raise and handle faults that work similar to throw-catch constructs
in traditional programming languages such as Java. As fault handling constructs can also
cause message exchanges between interacting processes they are also affected by the
consolidation. In this paper we want to describe a technique to merge BPEL process
models that communicate via fault handlers. Moreover, we describe an extension of the
merge operations proposed in [13] and [14].

We use BPEL4Chor [2] to model BPEL choreographies as this language provides a
means to define message links between the communication activities of the interacting
BPEL processes.

We assume that the reader is familiar with BPEL. Nevertheless, we give a brief
overview about BPEL’s fault handling concepts in Sect. 2. In Sect. 3 an overview on
the merge operations is provided and extensions to them are discussed. Then, Sect. 4
presents a technique to merge processes that communicate via BPEL fault handlers.
After discussing related work in Sect. 5, Sect. 6 concludes the work and provides an
outlook on future work.



10 Sebastian Wagner, Oliver Kopp, and Frank Leymann

2 BPEL Fault Handling Basics

BPEL offers three language constructs to repair faulty situations during process execution,
namely fault handlers, compensation handlers and termination handlers. If a fault occurs
within a scope all running activities within this scope are terminated and its fault handlers
are called. A fault handler is represented by a catch or catchAll block. Thereby, multiple
catch blocks can be defined for a scope. Each catch block catches a particular fault that
may be thrown during execution of the scope and contains BPEL activities to handle
this fault. A catchAll block contains logic to handle all other faults that do not match
to a particular catch block. If no explicit fault handlers are defined for a scope it has
an implicit default fault handler attached to it. If any kind of fault occurs during the
execution of the scope the default fault handler triggers compensation handling for its
child scopes (see below) and finally rethrows the fault to its parent scope. If this scope
does not provide a fault handler for this fault either it is propagated up to its parent scope
and so on until the process scope is reached. If the process scope cannot catch the fault
the process fails and is terminated.

Compensation handlers contain activities to undo work that was successfully per-
formed by the scope they are attached to (e. g., canceling a flight that was booked
successfully before). Hence, they are only executed if their associated scope has com-
pleted successfully.

To control the termination of a scope that is still running a termination handler can be
attached to it. Within the termination handler activities can be defined that are performed
before the actual termination of the scope. If no explicit termination handler was defined
for a scope its default termination handler compensates its child scopes. A more detailed
discussion about the idiosyncrasies of BPEL’s fault and compensation handling concepts
was provided by Khalaf et al. [4].

3 Asynchronous and Synchronous Consolidation

© Sebastian Wagner 4 

Root 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flow 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SA 
 
 
 
 
 
 
 
 
 

SB 
 
 
 
 
 
 
 
 
 

Process A 

Asynchronous Merge 

x S 
Opaque 

SYNS 
Assign 

S x 
Opaque 

x RC 
Opaque 

RCx 

Opaque 

and m 

x S 
Opaque 

S 
Invoke 

S x 
Opaque 

x RC 
Opaque 

RC 
Receive 

RCx 
Opaque 

Process B Process Pmerged 

SYNRC 
Empty 

SCOPE SCOPE 

def: vin def: vrc 

def: vin 

def: vrc 

Choreography CAB Merged Process Model 

vin ї�ŵ ŵ�ї�vrc 

vinї�vrc 

Figure 1. Asynchronous Merging Operation

We introduced the consolidation op-
eration to merge asynchronous and syn-
chronous communicating process models
in [13]. The aim of the consolidation is
that the atomic activities of the different
participants in the merged process model
have the same control flow relations as
in the original choreography. The basic
idea behind the consolidation algorithm is
that the message links imply control flow
relations between the activities of the com-
municating process models. The message
link m in Fig. 1 implies for instance that
the successor RC• of the receive activity is always performed after the predecessor
activity •S of the invoke activity S in process model A as RC• cannot be performed
before S completed. However, no statement can be made about the execution sequence



Consolidation of Interacting BPEL Process Models with Fault Handlers 11

between S• and RC•, e. g., if they have to be performed simultaneously or if S• is per-
formed before RC• and so on. This is different from the synchronous scenario depicted
in Fig. 2. There RC• is always performed before S•. As activity S does not complete
until it received a response message from RP that is performed after RC•. Given these
implicit control flow dependencies, the sending and receiving activities can act as merge
points. Therefore the consolidation operation materializes the implicit control flow to
explicit control flow relations between the activities.

The consolidation algorithm to merge an arbitrary number of process models is
described in the following. As a prerequisite we assume that the choreography is modeled
correctly [3] and deadlock free [8]. Moreover, we assume there exists just one instance of
each participant per choreography instance, i. e., interaction patterns involving multiple
instances of one participant such as one-to-many send/receive [1] are not supported
yet by the consolidation algorithm. Another restriction we make is that a repeatable
constructs such as a BPEL ForEach loop do not contain any communication activities
that are replaced by control flow links between the process models to be merged. As this
would violate the BPEL restriction that repeatable constructs must not be crossed by
control flow links [SA00070] 1.

In a first step a new process model Pmerged is created that contains a flow as root
activity. For each of the process models P1 to Pn to be merged a separate scope is created
in the flow activity of Pmerged . This ensures that the scope activities are performed
simultaneously. Each scope contains the root activity (along with its child activities)
of one of the process models P1 to Pn. The purpose of the scope is to isolate the
activities of the process models from each other as they were also isolated in the original
choreography. To avoid that uncaught faults are propagated up to the process level
(which would cause the whole process to fail) and that default compensation is triggered
a catchAll block with an empty activity is added to each scope as shown in Fig. 2. If
a process scope of a process to be merged has already a catch fault handler defined
simply the catchAll block is added as additional fault handler. If a catchAll already
exists in process scope nothing is changed.

Then the message links are materialized to control flow links. In the asynchronous
case the invoke activity S is replaced by an assign activity SY NS and the receive

activity RC by an empty activity SY NRC. SY NS emulates the message transfer between
between the former invoke and receive activity, i. e., it copies the message from the
input variable vs of the invoke to the variable vrc of the receive activity where the
message was copied to before. To perform the assignment the declaration of variable
vrc is lifted to the parent scope that encloses the two scopes that contain the participant
activities. Otherwise, SY NS cannot access vrc. The empty activity SY NRC replaces the
former receive RC. To avoid name clashes between variables it might be necessary
to adapt the variable names accordingly during the consolidation. The incoming and
outgoing links of S and RC are mapped to SY NS and SY NRC, respectively. An additional
link from SY NS to SY NRC is created. This link ensures that SY NRC is not started before
SY NS was executed.

The synchronous merge is sketched in Fig. 2. There additionally the reply activity
RP is replaced by the reply activity SY NRP to emulate the transfer of the response

1 Static Analysis (SA) Fault Codes are defined in the BPEL specification [10]



12 Sebastian Wagner, Oliver Kopp, and Frank Leymann

© Sebastian Wagner 5 

Root 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flow
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Synchronous Merge 

Process A Process B 

m 

x S 

Opaque 

S 

Invoke 

S x 

Opaque 

x RC 

Opaque 

RC 

Receive 

RCx  

Opaque 

RP 

Reply 

RPx 

Opaque 

Process Pmerged 

S
A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S
B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

x S 

Opaque 

S x 

Opaque 

x RC 

Opaque 

RCx  

Opaque 

SYN
RP 

Assign 

RPx 

Opaque 

SYN
S 

Assign 

and 

and 

SYN
RC 

Empty 

SYN
SR 

Empty 

SCOPE SCOPE 

def: vin def: vrc 

def: vrc 

def: vout 

def: vout 

def: vin 

def: vrp 

def: vrp 

FH
A
 

 
<catch 
faultName=“F1”/> 
<catchAll> 
   <empty/> 
</catchAll> 
 
 

FH
B
 

 
<catchAll> 
   <empty/> 
</catchAll> 

FH
A
 

<catch 
faultName=“F1”/> 

vin ї�ŵ 
m' їvout 

m їvrc 

vrp ї�m' 

vin ї�vrc 
 

vrp ї�vout 

Figure 2. Synchronous Merging Operation

message sent via message link m0. SY NRP copies the value of the former reply variable
vrp to the output variable of the former invoke activity vout . The declaration of vout
has to be lifted to the parent scope as well to make this variable accessible for SY NRP.
The empty activity SY NSR is added for the same reason SY NRC was added. The control
links of RC are mapped to SY NRP and the outbound links of S are mapped to SY NRC.
Moreover, a new link is created to connect SY NS and SY NSR and another one between
SY NRP and SY NSR to ensure that the successors of the former invoke activity are not
started before.

4 Consolidation in the Context of Fault Handlers

In this section we discuss the challenges that arise when materializing the control flow
from message links between communication activities that reside within BPEL fault
handlers. Thereby, we focus on the cross boundary link constraint imposed by the BPEL
specification [SA00071]. This constraint specifies that no control link must point to a
target activity within a fault handler from outside the fault handler, i. e., no link must
point into a catch or catchAll block.

In the following we distinguish three different scenarios (i) fault handlers without
communicating activities (ii) fault handlers with only outgoing message links and (iii)
fault handlers with at least one incoming message link.

The first scenario is trivial as there is no communication between the fault handlers
of the two process models that have to be merged. Consequently, they can be simply
merged with the merge operations introduced in Sect. 3.

The second is scenario is depicted in Fig. 3. In the process model A the fault handler
FHA is attached to the scope SA. FHA contains an asynchronous invoke activity A4 that
is related to the corresponding receive activity B2 in process model B via message



Consolidation of Interacting BPEL Process Models with Fault Handlers 13

link m. Note, that for simplicity reasons the flow activity containing SA and SB is not
explicitly depicted here and in the following figures.

© Sebastian Wagner 7 

Scenario 2: FHs with Outbound Links 

S
A 

 
 
 
 
 
 
 
 
 
 

Process A 

A1 

Opaque 

A2 

Opaque 

m 

… 

FH
A 

 
 
 
 
 
 
 

Process B 
S

B 

 
 
 
 
 
 
 
 
 
 
 

B2 

Receive 

B3 

Opaque 

… 

… … 

… 

S
A 

 
 
 
 
 
 
 
 
 

Process Pmerged 

A2 

Opaque 

A3 

Opaque 

… 

S
B 

 
 
 
 
 
 
 
 

B2 

Empty 

… … 

… 
B3 

Opaque 

Choreography CAB 

A3 

 

 

 

 

 

 

Flow 

A4 

Invoke 

A5 

Opaque 

… 

FH
A 

 
 
 
 
 
 
 

A3 

 

 

 

 

 

 

Flow 

A5 

Opaque 

… 
A4 

Assign 

Figure 3. Scenario 2: Message Link pointing from a Fault Handler

To merge the process models in a first step the merge operations introduced in Sect. 3
are applied. This results in the process model ABmerged shown in Fig. 5. As the new
control flow links materialized from the message links leave the fault handler boundaries
outbound only, the cross boundary link constraint is not violated. Note, that for simplicity
reasons the flow activity containing SA and SB is not explicitly depicted in Fig. 5 and in
the following figures.

The scenario in Fig. 3 is very similar to the previous one except that invoke activity
A4 is synchronous, hence, a second message link m2 from the reply activity points back
to A4. The synchronous consolidation operation creates from m2 the control flow link l2.
This link crosses the fault handler boundary of FHA inbound in order to realize that A5 is
performed after B2 or B3 respectively. This violates the cross boundary link constraint.

S
A
 
 
 
 
 
 
 
 
 
 

FH
A 

 
 
 
 
 
 
 

A3 

 

 

 

 

 

 

 
 

Flow 

Process A 

A1 

Opaque 

A2 

Opaque 

m1 

… 

Process B 

S
B
 

 
 
 
 
 
 
 
 
 
 
 

B1 

Receive 

… 

… 

… 

A5 

Opaque 

B2 

Opaque 

S
A 

 
 
 
 
 
 
 
 
 

Process P
merged 

A1 

Opaque 

A2 

Opaque 

… 

FH
A 

 
 
 
 
 
 
 

S
B 

 
 
 
 
 
 
 
 

B1 

Empty … 

… 

B2 

Opaque 

l1 

l2 

A3 

 

 

 

 

 

 

 

 

 

 

 
Flow 

A6 

Empty 

A5 

Opaque 

def: v
in 

def: v
rc 

def: v
out 

def: v
rp 

A4 

Invoke 
v

in
 ї�ŵ

1 

m
2
 їv

out 

 

B3
 

Assign 

A4 

Assign 
v

in
 ї�v

rc 

 

v
rp

 ї�v
out 

def: v
rc 

def: v
rp 

B3 

Reply 
v

rp
 ї�ŵ

2 

def: v
in 

def: v
out 

def: v
a 

def: v
a 

Figure 4. Scenario 3: Message Link pointing into a Fault Handler



14 Sebastian Wagner, Oliver Kopp, and Frank Leymann

© Sebastian Wagner 9 

Scenario 3: FHs with Inbound Links - Solution 

S
FH 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

S
B 

 
 
 
 
 
 

B1 

Empty 

B2 

Opaque 

… 

… 

Process P
merged

 

l1 

l2 

A8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Flow
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

S
A 

 
 
 
 
 
 
 
 
 
 

A1 

Opaque 

A2 

Opaque 

… 

FH
A 

 
 

… 
A7 

Empty 

A3 

 
 
 
 
 
 
^ 
 
 
 

Flow 

A6 

Empty 

A5 

Opaque 

def: v
rc 

def: v
rp 

def: v
out 

def: v
in 

def: v
a 

A4 

Assign 
v

in
 ї�v

rc 

 

B3
 

Assign 
v

rp
 ї�v

out 

Figure 5. Merged Process Model with outfac-
tored Fault Handler Logic

To develop a solution to overcome this
problem control flow links pointing into a
fault handler have to be avoided, hence, the
control flow has to be modified accordingly.
We cannot remove the fault handler com-
pletely as it can be activated any time if a
fault is thrown from within a scope. This be-
havior cannot be emulated by using other
BPEL constructs. Instead, the fault handler
is kept and the fault handling activities are
factored out of it. Given a scope S that con-
tains several fault handlers FH1

S to FHn
S

defined by catch or catchAll blocks. Af-
ter asynchronous and synchronous merges
were performed for each catch block FH i

S
it is checked if it contains activities that are
targets of links originating from outside of
FH i

S. If this is the case for at least one fault handler FH i
S, a new scope SFH that contains

a flow activity is created. This flow activity serves as container for the scope S along
with its fault handlers FH. Then for each fault handler FH i

S with an incoming link its
root activity root i

FH is moved to the scope SFH and replaced by a new empty activity
ei

FH . Between ei
FH and root i

FH a control link is created where ei
FH acts as source. This

ensures that the fault handling logic contained in root i
FH is always performed when

FH i
S is activated. All fault handlers that have no incoming control flow link remain

unchanged. Figure 5 shows the merged process model Pmerged where the root activity
A3 of a fault handler was factored out. The new empty activity A7 acts as source for the
control link pointing to A3. The activities that were moved out of the fault handler cannot
access the local data context (local variable, partner link declarations etc.) that was either
defined in scope S or in the fault handler as they reside in the parent scope SFH . Hence,
the data context has to be moved to the parent scope SFH of the fault handling activities.
In Fig. 5 this affects the variables va and vin, hence, they are lifted from scope S to scope
SFH .

The solution described above keeps the control flow relations between the (non-
communicating) basic activities as defined in the choreography. If SA in Fig. 5 completes
successfully the fault handler FHA is uninstalled and all links originating from activity
A7 are marked as dead. Thus activity A3 and also all activities within SB are not activated
either (dead path elimination). This is the same behavior as modeled in the choreography.
In case a fault is thrown and caught by FHA activity A3 is executed and its outgoing links
are activated. Hence, also the former root activity of the fault handler A3 is executed
and all activities in SB are performed. When SA completes successfully but SFH was not
completed yet by the process engine (which usually happens immediately after SA was
completed) and SFH terminated due to an error in its parent scope the default termination
handler compensates all successfully executed child scopes of SFH (if any). In case a
fault is thrown during the execution of the fault handler FHA this fault is simply thrown
to its parent scope. Also this behavior is kept as SFH does not catch any fault, i. e., it



Consolidation of Interacting BPEL Process Models with Fault Handlers 15

simply rethrows the fault to its parent scope that used to be the parent scope of scope SA.
This also happens when SA throws a fault that is not caught by fault handler FHA.

5 Related Work

Compared to many other techniques that merge processes that are semantically equivalent
such as different variants of the same process, we aim to merge collaborating processes.
Mendling and Simon [9] propose for instance an approach where semantically equivalent
events and functions of Event Driven Process Chains [12] are merged. Küster [5]
describes how change logs can be employed to merge different process variants that
were created from the same original process.

Instead of directly generating a BPEL orchestration out of a BPEL4Chor choreogra-
phy, an intermediate format may be used. There is currently no approach keeping the
structure of the generated orchestration close to the structure of the original choreography.
For instance, Lohmann and Kleine [7] do not generate BPEL scopes out of Petri nets,
even if the formal model of Lohmann [6] generates a Petri net representation of BPEL
scopes.

6 Conclusion and Outlook

In this work we extended the process consolidation approach presented in [13] and [14].
We have shown, how to isolate the activities of the different partners from each other by
using scopes and we also extended the asynchronous and synchronous merge operations
to reduce the number of control flow links that may be created during the consolidation
operation. The main contribution of this work is a technique to merge process models
that interacted via fault handlers before they were merged. To satisfy the constraint that
no control links must point into a fault handler we have shown a technique to factor the
fault handling activities out of the handler.

In future works we also have to propose a way to merge process models that interact
via compensation handlers and event handlers. This is even more challenging as they
allow neither inbound nor outbound control flow links. Another issue we have to address
is that our current merge operations create process models that violate the peer-scope-
dependency rule. Basically, this rule states that two scopes enclosed within the same
parent scope must have no cyclic control-flow dependencies, otherwise the compensation
order of these scopes cannot be determined. However, in practice this rule is not enforced
by engines such as the Apache ODE2 or BPEL-g3.

In this paper, we informally argued that the consolidation approach is correct. A first
approach to provide a more formal validation has been presented in [14]. Our ongoing
work is to evaluate the Petri net formalizations with respect to formal foundations for
our merging approach.

Acknowledgments This work was partially funded by the BMWi project Migrate!
(01ME11055) and the BMWi project CloudCycle (01MD11023).

2
http://ode.apache.org/

3
http://code.google.com/p/bpel-g/



16 Sebastian Wagner, Oliver Kopp, and Frank Leymann

References

1. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: BPM. Springer
(2005)

2. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: From specification to
execution. Data & Knowledge Engineering 68(10), 946–972 (Apr 2009)

3. Decker, G., et al.: Non-desynchronizable Service Choreographies. In: ISCOC 2008
4. Khalaf, R., Roller, D., Leymann, F.: Revisiting the Behavior of Fault and Compensation

Handlers in WS-BPEL. In: OTM 2009
5. Küster, J., Gerth, C., Förster, A., Engels, G.: A Tool for Process Merging in Business-Driven

Development. In: Proceedings of the Forum at the CAiSE (2008)
6. Lohmann, N.: A Feature-Complete Petri Net Semantics for WS-BPEL 2.0. In: WS-FM’07:

Web Services and Formal Methods, 4th International Workshop (2007)
7. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Models into

Simple Abstract BPEL Processes. In: Modellierung. Gesellschaft für Informatik e. V. (2008)
8. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Verification and

Participant Synthesis. In: WS-FM’07: Web Services and Formal Methods, 4th International
Workshop (2007)

9. Mendling, J., Simon, C.: Business Process Design by View Integration. In: BPM Workshops.
Springer (2006)

10. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(2007)

11. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0 (2011), OMG Document Number: formal/2011-01-03

12. Scheer, A.W., Thomas, O., Adam, O.: Process Aware Information Systems: Bridging People
and Software Through Process Technology, chap. Process Modeling Using Event-Driven
Process Chains. Wiley-Interscience (2005)

13. Wagner, S., Kopp, O., Leymann, F.: Towards Choreography-based Process Distribution In
The Cloud. In: Proceedings of the 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems (2011)

14. Wagner, S., Kopp, O., Leymann, F.: Towards Verification of Process Merge Patterns with
Allen’s Interval Algebra. In: ZEUS. CEUR, Bamberg (2012)



Business Process Mining for Collaborative Service-
Oriented Systems – “Duality”  of  Process  Representations 

and the Need for Statistical Treatment 

Jörg Becker, Dominic Breuker 

Department of Information Systems / ERCIS at the University of Muenster, Germany 
Leonardo-Campus 3, 48149 Muenster, Germany 

{becker,breuker}@ercis.uni-muenster.de 

Abstract. Service-oriented systems are deployed by companies to support busi-
ness processes, especially in inter-organizational collaborative settings. Process 
mining provides techniques to visualize and understand the emergent behavior 
in such systems based on data, as compared to what employees believe it is like. 
In highly unstructured settings however, these techniques have to deal with in-
complete data, which still is a demanding challenge. In order to address it, we 
propose an alternative “dual” interpretation of mining results and outline the 
theoretical basis upon which process mining techniques could be extended and 
modified to deliver such results. 

Keywords : Service-Orientation, Business Process Mining, Incompleteness 

1 Motivation 

With   today’s   pressure   to   rapidly   adapt   to   highly   dynamic   business   environments,  
collaborations between different business partners have to be set up fast and in a flex-
ible manner. Ad-hoc formation of virtual teams is an increasingly observable collabo-
ration pattern. Technology can be considered one of the main facilitators of this de-
velopment [1]. Service-oriented systems are perceived as a particularly suitable means 
of implementing collaborative services virtual teams rely on, including knowledge 
and resource sharing as well as communication and interaction [2]. 

For companies, it is important to be aware of their work practices in order to man-
age and align their activities. Business processes, codified within models, constitute a 
popular concept to do this [3]. Creating adequate business process models though is 
typically a laborious task as comprehensive interviews with process participants have 
to be conducted in  order   to   identify  and  model   the  processes’   structure [4]. Process 
mining techniques constitute a data-driven alternative. They allow analyzing business 
processes as they actually take place, provided that event data can be obtained from 
information systems involved in the processes’ execution [5]. Consequently, process 
mining techniques could be applied to mine collaborative service behavior and to 
create business process models of what is going on in a company or even in virtual 
teams spanning multiple organizations. 



18 Jörg Becker and Dominic Breuker

Traditional modeling techniques such as Event-driven Process Chains (EPC) or the 
Business Process Model and Notation (BPMN) are successful in representing busi-
ness processes of repetitive and well-standardized nature. Unstructured processes 
though are seen as hardly amenable to traditional process modeling due to uncertainty 
regarding their outcome as well as the steps and resources needed to produce it [6]. 
With process mining techniques being designed for processes of the first kind, the 
question is to which extent they are applicable to unstructured collaborative processes 
in service-oriented systems that belong more to the latter. 

2 Related Work 

Research investigating process mining to the field of services includes technical as-
pects such as logging in service-oriented architectures [7] but also case studies, e.g., 
about using process mining in the IBM WebSphere environment [8]. Challenges aris-
ing in this context include correlations between related process instances as well as 
restricted service behavior due to context [9]. Other challenges tackled in the litera-
ture include identifying events belonging to the same process instance [10]. 

However, these works target well-structured processes. With respect to collabora-
tive service-oriented systems, little research has been done. Incompleteness, describ-
ing a situation in which a mining algorithm is provided with a dataset not including all 
necessary information, is a challenge process mining techniques must deal with. It is 
of particular importance in collaborative, unstructured settings [11]. The obvious 
reason is that the huge number of possibilities for performing an unstructured process 
leaves no hope for obtaining an event log enumerating them all. For this and other 
reasons, some researchers move away from mining holistic process descriptions to-
wards aggregated features (e.g., number of interactions between individuals) [12]. 

3 Research Outline 

The question we want to investigate is if it is possible to adapt process mining 
techniques in a way such that they can be applied in settings in which event logs are 
expected to be far from complete. Naturally, we cannot expect to generate an exact 
description of the underlying real-world process. This raises the question what any 
process model generated on an incomplete dataset is supposed to represent. A possi-
ble answer can be obtained through the following line of reasoning. 

The normal way of thinking about processes models is that they specify the al-
lowed behavior of a system. As an example, consider a simple process in which activ-
ity A is performed first, and then either activity B or C is performed after that, which 
both terminates the process. This positive view defines the process as a set of possibly 
observable instances: {𝐴𝐵, 𝐴𝐶}. In such a setting, it makes sense to apply an algo-
rithm to learn this allowed behavior. In a dual way though, one could equivalently 
think of a negative view that defines the process as the set of unobservable instances. 
In the example above, {𝐴𝐴, 𝐵𝐴,𝐵𝐵, 𝐵𝐶, 𝐶𝐴, 𝐶𝐵, 𝐶𝐶,… } would be this set. While this 
set will be huge for highly structured processes, the opposite might be the case for 



Business Process Mining for Collaborative Service-Oriented Systems 19

unstructured ones. For this reason, algorithms searching for disallowed behavior in 
unstructured processes might use scarce data more efficiently. 

But how can an algorithm infer disallowed behavior if only allowed behavior is 
observed in event logs? The answer is delivered by statistics. If direct negative evi-
dence is unavailable one can work with indirect negative evidence instead, provided 
one is willing to assume a suitable statistical model. To illustrate this, consider the 
example of an unfair coin always showing heads when tossed. This could be inferred 
directly from the information that observing tails is the impossible event. Alternative-
ly, one could observe that heads occurs surprisingly often, with each additional heads 
increasing the confidence that tails is a highly unlikely event. Statistical tests provide 
an established theoretical framework to incorporate such reasoning into process min-
ing algorithms. Investigating how this can be accomplished is our approach to devel-
oping process mining techniques applicable to unstructured, collaborative service-
oriented systems. 

References 

1. Lipnack, J., Stamps, J.: Virtual teams: People working across boundaries with technology. 
John Wiley & Sons, New York (2000) 

2. Jerstad, I., Dustdar, S., Thanh, D. V.: A service oriented architecture framework for col-
laborative services. In: 14th IEEE International Workshops on Enabling Technologies In-
frastructure   for  Collaborative  Enterprise   (WETICE’05).  Linköping,  Sweden   (2005)  121–
125 

3. van der Aalst, W.M.P., Hofstede, A.H.M. ter, Weske, M.: Business Process Management: 
A Survey. Lecture Notes in Computer Science 2678 (2003) 1–12 

4. Kettinger, W.J., Teng, J.T.C., Guha, S.: Business Process Change: A Study of Methodolo-
gies, Techniques, and Tools. MIS Quarterly 21(1) (1997) 55–80 

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of 
Business Processes. Springer, Berlin / Heidelberg (2011) 

6. Seidel, S., Müller-Wienbergen, F., Rosemann, M.: Pockets of Creativity in Business Pro-
cesses. Communications of the Association for Information Systems 27(1)  (2010) 415–
436 

7. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services interac-
tion mining. International Journal of Business Process Integration and Management 1(4) 
(2006) 256–266 

8. van der Aalst, W.M.P., Verbeek, H.M.W.: Process Mining in Web Services: The Web-
Sphere Case. IEEE Data Eng. Bull 31(3) (2008) 45–48 

9. van der Aalst, W.M.P..: Service Mining: Using Process Mining to Discover, Check, and 
Improve Service Behavior. IEEE Transactions on Service Computing (2012) 

10. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for 
process discovery from web service interaction logs. The VLDB Journal 20(3) (2011) 
417–444 

11. van der Aalst, W.M.P.: Exploring the CSCW spectrum using process mining. Advanced 
Engineering Informatics 21(2) (2007) 191–199 

12. Truong, H.L., Dustdar, S.: Online Interaction Analysis Framework for Ad-Hoc Collabora-
tive Processes in SOA-Based Environments. Transactions on Petri Nets and Other Models 
of Concurrency 2  (2009) 260–277 



Improving Process Monitoring and Progress

Prediction with Data State Transition Events

Nico Herzberg and Andreas Meyer

Hasso Plattner Institute at the University of Potsdam
{nico.herzberg, andreas.meyer}@hpi.uni-potsdam.de

Abstract. Monitoring business processes during their execution is one
important aspect of business process management. Process monitoring
requires observed events, which are recorded in information systems, to
reason about, amongst others, process progress. Especially in manual
executing process environments, the observed events are most likely
sparse. Therefore, we introduce an approach increasing the number of
observed events by capturing data state transition events, which occur
after successfully writing a data object during process execution.

1 Introduction

In the field of business process management, monitoring is used to observe process
behavior and probably to react upon events as well as to predict upcoming process
steps during process execution. Processes automated by information systems, i.e.,
process engines, can be monitored very well because the system usually provides
logging capabilities and therefore, the progress is easily recognizable. In contrast,
in environments with processes to be mainly executed manually, such as in health
care, many occurring events are not captured. Thus, event information about such
processes is incomplete and exact proposition about progress, e.g., by applying
the concept of event monitoring points [1], is not possible. An event monitoring
point is correlated to certain events captured by an IT system connected to a
specific event data source, e.g., a database or a bar code scanner, and informs
about certain states of a process activity, such as enabled, started, or terminated.
Probabilistic means, as for instance explained in [4], can provide an indication
about process progress but are an approximation only.

Nevertheless, progress recognition of the complete process and an holistic
view on the process are goals in manual executing process environments also.
Therefore, we will introduce an approach utilizing events from data object creation
or modification to increase the number of observable events used for process
monitoring and prediction of process progress. We call them data state transition

events. After the write of a data object in a specific data state, we can assume
this data object to be existent. Besides arguing about process progress, the
registration of events helps in deciding about future process execution and the
chance of proper completion of a process or the reachability of a specific activity.
Additionally, the approach can be utilized to identify incorrect behavior similarly



Improving Process Monitoring and Progress Prediction 21

2 Nico Herzberg and Andreas Meyer

to what is done in the field of data conformance, e.g., [3]. In contrast to these
approaches, which verify conformance at design time (process model level), we
observe the actual execution and identify inconsistencies during run time (process
instance level).

2 Approach

The presented approach enables insights into process execution based on informa-
tion about a data object. Data objects and their life cycles are the basis for this
approach. A data object life cycle (OLC) is represented by a Petri net, where a
place describes a data state and a transition represents a data state change from
the preceding to the succeeding one. An OLC specifies all allowed data state
changes of the corresponding data object. As an example, we refer to an Invoice

with data states created, sent and paid, whereat these states can be reached in
that order only, see Fig. 1 – Data Object Life Cycle Level. Based on this OLC,
those transitions are selected that can be monitored with events. We refer to an
event as a happening in a particular point in time at a certain place in a certain
context that is represented in the IT system landscape, see Fig. 1 – IT Level.
The observable data state transitions of the OLC have to be linked to the events
that provide the information about the triggering of the transitions. This link is
provided by a binding, see Fig. 1 – Event Level, of the particular transition of
the OLC to an implementation that extracts the necessary information about
the events from a data source including the correlation to a specific data object
instance during runtime. For the binding, we use the same technique as presented
in our earlier work [1]. In our example, we assume that sending the invoice and
receiving the payment can be observed by retrieving the relevant data from a
database.

Data Object
Life Cycle Level

Event Level

set 
created

cre-
ated

init sent paid

Create 
Invoice

Check 
Payment

Invoice
[created]

Invoice
[sent]

Invoice
[paid]

Bindings Event Store

Model View (Design Time) Instance View (Run Time)

Process Level

IT Level IT System 
Landscape

Mail 
Invoice

Invoice
set 

created
cre-
ated

init sent paid

Create 
Invoice

Check 
Payment

Invoice
[created]

Invoice
[sent]

Invoice
[paid]

Mail 
Invoice

Invoice(1)

es t es t es t

set 
sent

set 
paid

set 
sent

set 
paid

IT System 
Landscape

Create Invoice Create Invoice(1)

Fig. 1. Scenario describing the approach at design time and run time

During the design of several process models, the data objects can be assigned
to particular activities, whereas the activities either read a data object in a
certain data state, create a data object in a certain data state, or transfer a data
object from one data state to another. We assume that the usage of the data
object in a process correlates correctly to the OLC, i.e., the process only uses
the specified data states and their transitions as shown in Fig. 1 – Process Level.



22 Nico Herzberg and Andreas Meyer

Improving Process Monitoring and Progress Prediction 3

Based on the assignment of the data objects to the activities, it is possible to
provide information about the process execution during runtime. We assume that
an activity is enabled if the activity could be executed because of the control
flow specification and if the input data object is available in the required data
state. Furthermore, we assume that an activity is terminated as soon as the
output data object is present in a certain data state. Information about process
execution can be provided for activities, which consume or provide data objects
in certain data states whose state transition is observable.

Referring to our example, the termination of activity Create Invoice and the
enablement of Mail Invoice cannot be monitored with information about the data
object Invoice only, whereas the completion of the second activity as well as the
enablement of the third activity of the process model can be tracked on IT Level.
This is visualized by the edges to the Bindings database in Fig. 1 (left part). At
design time, the data state transitions to sent and paid are marked as observable
(bold outline). This maps to the aforementioned monitoring capabilities at run
time. At run time, the progressing in the process can be recognized by data state
transition events occurring in the event store. In Fig. 1 (right part), an event for
sending Invoice(1) (data object with corresponding instance id) is observed in the
event store (solid edge), but there is no event available for the payment although
it is expected to happen some time (dashed line). For monitoring process details
not observable by the means of data manipulation, the introduced approach can
be combined with other approaches, e.g., [1].

For simplicity reasons, we described the approach assuming at most one
input data object and at most one output data object per activity. However, the
approach is also valid for many input and output data objects.

3 Related Work

In [1], a framework is presented that describes the definition of so-called event
monitoring points in business process models based on their activities’ states.
This work builds the basis of the approach discussed in this paper. As process
mining techniques [5], especially conformance checking, are relying on event logs
that are complete with respect to the underlying process model, the presented
approach could help to enrich existing event logs especially in manual executing
process environments and extend them to complete event logs. [3] checks for
conformance between process models and data objects at design time while [2]
ensures compliance to regulations by restricting the design of artifact-centric, i.e.,
data-centric, processes. In contrast to these works, our approach targets on run
time compliance to data objects.

4 Conclusion

The presented approach uses information about data objects and their data states
resp. data state transitions from process models to enable process monitoring.
The observable data about the transition of a data object from one data state
to another provides further insights about the process execution. Thus, a more
detailed process monitoring can be assured.



Improving Process Monitoring and Progress Prediction 23

4 Nico Herzberg and Andreas Meyer

References

1. N. Herzberg, M. Kunze, and A. Rogge-Solti. Towards Process Evaluation in Non-
automated Process Execution Environments. In Services and their Composition

(ZEUS), 2012.
2. N. Lohmann. Compliance by design for artifact-centric business processes. In

Business Process Management, pages 99–115. Springer, 2011.
3. A. Meyer, A. Polyvyanyy, and M. Weske. Weak Conformance of Process Models

with respect to Data Objects. In Services and their Composition (ZEUS), 2012.
4. A. Rogge-Solti and M. Weske. Enabling Probabilistic Process Monitoring in Non-

automated Environments. In BMMDS/EMMSAD, pages 226–240, 2012.
5. W. M. P. van der Aalst. Process Mining - Discovery, Conformance and Enhancement

of Business Processes. Springer, 2011.



Improving Portability of Cloud Service Topology

Models Relying on Script-Based Deployment

Johannes Wettinger, Oliver Kopp, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
{wettinger, kopp, leymann}@iaas.uni-stuttgart.de

Abstract Portability is key for services running in the Cloud to prevent
vendor lock-in. Today, many Cloud services are portable and can thus be
moved from one Cloud provider to another. However, the management
of these services is often bound to provider-specific management tooling.
Thus, the way of management of a particular Cloud service may completely
change when moving it to another Cloud provider. This paper presents
concepts to improve the portability of Cloud service topology models
that are deployed and managed using scripts. We highlight the challenges
of a semi-automatic procedure to generate portable TOSCA-compliant
topology model components based on Juju topology model components.

1 Introduction

Reducing the costs of infrastructure and service management is one of the most
important aspects of Cloud computing because traditional IT service management
is costly. This goal is achieved by automating the whole management of services
running in the Cloud. Management of Cloud services is not limited to deploying
and decommissioning service instances; it includes several management tasks that
need to be performed once a particular service instance has been deployed. As an
example, the service instance has to scale up and down depending on the current
workload. Today, Cloud providers o�er proprietary tooling to automate Cloud
service management such as “CloudFormation” and “Auto Scaling” provided
by Amazon Web Services (http://aws.amazon.com). The learning curve is flat
because these tools are easy to use. However, when the service is moved to another
Cloud provider the management tooling is di�erent. Thus, the service may be
managed in a completely di�erent manner. The service itself may be perfectly
portable, so it can be moved from one Cloud provider to another. However, this
may not be true for the service management. This is why portability is essential
for services running in the Cloud, especially when it comes to service management.
To achieve management portability, this paper provides two key contributions:
(1) an approach to generate standard-compliant topology model components and
(2) concepts to improve portability of these generated components.

2 Background

We assume that the structure and management behavior of a Cloud service is
specified using a service topology model consisting of several topology model



Improving Portability of Cloud Service Topology Models 25

2 Johannes Wettinger, Oliver Kopp, and Frank Leymann

components. As an example, two topology model components may be part of
a topology model for deploying and managing a Web application: an “Apache
Web server” and a “MySQL database server.” A topology model component
contains scripts that are typically implemented using a scripting language such
as Python or Perl. These scripts realize the management actions that can be
performed regarding a service instance of the particular topology model such
as deploying and updating its components. We focus on service deployment

as one of the most important management tasks, based on topology models.
Today, there are existing topology model components publicly available that can
be used to deploy and manage services in the Cloud. A prominent example is
Juju (http://juju.ubuntu.com). The community shares more than one hundred
topology model components as open source software. Such a component is called
a “charm” and can be combined with other “charms” to create a service topology
model that can be instantiated and managed in the Cloud. The core of a charm
is a set of scripts to enable automated management of a particular service
instance. However, these scripts are bound to Ubuntu Linux and thus are not
portable. There are standardization e�orts going on in the field of model-driven
Cloud management that are focusing on management portability: the Topology
and Orchestration Specification for Cloud Applications (TOSCA, http://www.

tosca-open.org) is an emerging standard supported by a number of prominent
companies in the industry such as IBM, SAP, and Hewlett-Packard. TOSCA
enables the specification of portable topology models and portable topology model
components. However, an ecosystem including an active community sharing
topology models and topology model components based on TOSCA is still
missing.

3 Generating Standard-Compliant

Topology Model Components

One goal of our work is to bring together the standardization e�orts of TOSCA
enabling management portability with Juju’s growing ecosystem and active com-
munity. The first step to achieve this goal is outlined in this section: transform-
ing topology model components published by the Juju community to TOSCA-
compliant topology model components. Both TOSCA’s and Juju’s topology
models basically specify graphs consisting of nodes and relations between nodes
to define the structure of a Cloud service. In TOSCA, both relations and nodes
are explicitly modeled as separate topology model components, whereas Juju
specifies nodes as topology model components only. Consequently, two major
steps have to be performed: (1) a TOSCA-compliant topology model component
has to be generated for each Juju charm; as a result, each node that can be
modeled using Juju, can be modeled using TOSCA, too. However, the relations
between these nodes cannot be modeled in TOSCA because the corresponding
topology model components are missing. (2) Thus, additional TOSCA-compliant
topology model components have to be generated for each relation that can be
implicitly modeled using Juju.



26 Johannes Wettinger, Oliver Kopp, and Frank Leymann

Improving Portability of Cloud Service Models 3

As an example, for the Juju charms “WordPress application” and “MySQL
database server,” two corresponding topology model components are generated
that can represent nodes in a TOSCA topology model (service topology). For the
relation “WordPress application connects to MySQL database server,” which can
be implicitly modeled in Juju, a separate topology model component is generated
that can represent the corresponding relation in a TOSCA topology model.

4 Improving Portability of Generated

Topology Model Components

The generated topology model components as described in Section 3 are TOSCA-
compliant and thus follow an emerging standard. Service topology models using
these components can be deployed and managed using an arbitrary TOSCA
engine. This is already an improvement of portability because the original topology
model components shared by the Juju community can be processed by the Juju
engine only. However, the scripts inside the topology model components are still
restricting the portability in two ways: (1) the scripts use a set of commands and
environment variables that are available on each virtual machine managed by
Juju. (2) The scripts are designed to be executed on Ubuntu Linux; as a result,
their execution fails on other Linux variants and other platforms.

The first restriction can be compensated by generating wrapper scripts that
prepare the execution environment and then call the actual scripts originating in
Juju charms. These wrapper scripts receive their input from the TOSCA engine
and expose commands and environment variables that are used by the actual
scripts. The second restriction is a greater challenge: the generated topology
model components have to be refined to further enhance their portability either by
improving the existing scripts so they also run on other platforms or by creating
and attaching additional scripts to support other platforms. These additional
scripts can be created by copying an existing script and semi-automatically adapt-
ing it to be executable on another platform. This alternative realizes separation of
concerns and thus is the preferred one in contrast to directly modifying an existing
script. We are currently designing a semi-automatic, modular, and extensible
procedure to convert a script that is implemented for a specific platform to be
executed on another one.

The concepts described in Section 3 and Section 4 enable the creation of
portable topology models based on TOSCA using the generated and refined
topology model components owning a high degree of portability. In future, we
focus on reusing these concepts to generate additional topology model components
originating in communities of configuration management tools such as Chef
(http://www.opscode.com/chef).

Acknowledgments The research leading to these results has partially received
funding from the 4CaaSt project part of the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 258862. Further, this
work was partially funded by the BMWi project CloudCycle (01MD11023).



Towards Integrating TOSCA and ITIL

Christoph Demont2, Uwe Breitenbücher1, Oliver Kopp1, Frank Leymann1, and
Johannes Wettinger1

1 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{breitenbuecher,kopp,leymann,wettinger}@iaas.uni-stuttgart.de

2 Informations- und Kommunikationszentrum, University of Stuttgart, Germany
christoph.demont@izus.uni-stuttgart.de

Abstract The integration of low level management functionalities pro-
vided by TOSCA and high level processes as defined by ITIL may provide
significant improvement opportunities to the application provider as on
both levels workflow technology can be employed. In this paper, we
present Key Performance Indicator Analysis Plans as first idea how both
approaches can be integrated.

1 Introduction and Fundamentals

Topology and Orchestration Specification for Cloud Applications (TOSCA) [3]
supports automating Cloud application management by providing a formal
method to model the structure of applications as topology and their management
functionalities through so called management plans. These plans provide man-
agement functionality such as instantiating a service, backup data or scaling out
applications. A major issue in this field is the question how to embed these plans
in the overall management strategy of the application provider. The correct time
to execute a management plan often depends on certain situations which may be
expressed as Key Performance Indicator (KPI) [2] values. In this paper we propose
an idea showing how to integrate TOSCA with the IT Infrastructure Library
(ITIL) [1] to manage the execution of plans in a well-defined but flexible manner
by introducing so called KPI Analysis Plans (KPI-APs). Our idea supports using
workflow technology on both layers to achieve robust and reliable management.
First, we explain TOSCA and ITIL and present our integration idea afterwards
before we conclude and give an outlook.

TOSCA is an emerging standard supported by a number of prominent com-
panies in the industry such as IBM, SAP, and Hewlett-Packard. It enables the
specification of portable and holistic service models that can be used to automati-
cally instantiate concrete services in the Cloud. A service model basically specifies
a service topology (graph) consisting of nodes and relationships between nodes
to define the structure of a Cloud service. A node is any kind of component that
can be deployed into the Cloud, e.g., a virtual machine or a software component
hosted on a virtual machine. First, nodes and relationships need to be specified
by defining node types and relationship types. These type definitions include
abstract operation definitions and concrete implementation artifacts that are



28 Christoph Demont et al.

2 Christoph Demont et al.

attached to particular operations. As an example, a “MySQL database” node type
may own an “install” and a “configure” operation to set up a MySQL database
instance. The operations may be implemented by a set of scripts that are part of
the service model as implementation artifacts. Second, the actual service topol-
ogy is defined by connecting nodes derived from node types using relationships
derived from relationship types. An example for a very simple service topology is:
“MySQL database [hosted on] Ubuntu Linux [hosted on] virtual machine.” The
complete service model including all its parts is contained in a Cloud service
archive (CSAR) [3]. Complex composite applications can be created by combining
several CSARs. The person who is in charge of creating and maintaining the
service model may create and add management plans (workflows) to the service
model in order to define any kind of management activity. Examples for such
an activity are service deployment, database backup, or updating an application
component. Typically, these plans are defined using a workflow language such as
Business Process Model and Notation (BPMN). Plans interact with operations
defined by node types and relationship types to perform actions on a particular
service instance.

ITIL is a widely adopted approach for IT Service Management. It provides an
accepted practical framework to identify, plan, deliver and support IT services
to the business [1]. All necessary processes, the structural organization and the
tools to be used are described. One of ITILs objectives is to gain cost benefits
for the applying organization. The framework also includes recommendations
for the definition of Key Performance Indicators (KPI) which are necessary for
measuring performance and condition of IT services. One requirement in cloud
computing is the utilization of ITIL for defining processes and to derive measures
to quantify economic benefits and impact. For monitoring and controlling IT
organization, KPIs are interpreted and measures can be taken to improve process
performance continuously. On operative level adequate tasks are derived from
improvement measures, which need to be executed at the time defined to finally
improve the IT services in a continuous improvement process [4]. approved within
a comparison of operating costs that ITIL based application management in
cloud computing supports meeting QoS requirements, safes costs and leads to
an overall better service quality. Therefore, we utilize ITIL as a management
framework to optimize Cloud application management automated by TOSCA.

2 Integration Idea

To control and manage an IT organization close to the optimum with ITIL
the organization should operate in a workflow-based process oriented way – in
organizational and technical respect. This enables benefitting from the workflow
technology’s properties such as fault handling, recoverability, and compensation
mechanisms on both levels. KPIs support the management in its decisions and are
modeled on company level as they are used to monitor and control the enterprise
performance. Both, technical and organizational KPIs are derived from defined
measures out of the processes and need to be integrated.



Towards Integrating TOSCA and ITIL 29

Towards Integrating TOSCA and ITIL 3

KPIs are typically contracted in Service Level Agreements (SLA), are con-
tinuously renegotiated in service level management processes, and adapted to
changing business requirements. To meet these SLA requirements, the specific
and adequate measures in TOSCA need to be defined and recorded and to be
submitted to the business processes. TOSCA already works in a process oriented
manner. The plans are ideal connecting points to and from ITIL based business
processes. To connect TOSCA systematically with ITIL based business processes,
the measures coming from TOSCA need to be integrated into KPIs defined in
ITIL. This problem is tackled in this paper. Of course, vice versa mechanisms for
triggering plans and dynamic plan generation or adaption of existing plans need
to be provided in future work.

Thus, the integration of TOSCA and ITIL consists of two cyclic steps influenc-
ing each other directly: Analysis and Monitoring of Key Performance Indicators
and triggering TOSCA management plans based on these results to react to the
measured KPIs. The analysis of an application’s KPIs is typically a complex
challenge. Although there are monitoring frameworks and tools, the integration
of di�erent KPI measurements of di�erent application components is di�cult
and mainly depends on the overall characteristic of an individual application: For
some applications a certain combination of KPIs may be appropriate while other
applications would lose their key success factors. Thus, there are two challenges:
(i) Integrating di�erent KPIs measurements of di�erent application components
in a (ii) customizable but well-defined manner. We argue, that a generic approach
is not suitable as especially the ability to customize the integration based on
individual requirements is of vital importance as stated above. Thus, to tackle
this problem, we introduce an analysis method which is tightly coupled to an
individual application but benefits from standardized and reusable artifacts:
Key Performance Indicator Analysis Plans (KPI-AP). These plans are TOSCA
management plans implemented by the application developer of the application
itself following well-defined KPI metrics. They are responsible for measuring
high level KPIs of the overall application by orchestrating individual low level
KPI measurement operations provided by the application’s components and pro-
vide a standardized way to integrate reusable artifacts and enable portable KPI
measurement as they are contained in CSARs. This allows di�erent application
providers to embed the plans in their overall ITIL management processes as their
functionality and KPI results are well-defined.

3 Conclusion and Outlook

In this paper we presented a first idea showing how to integrate TOSCA and
ITIL by using Key Performance Indicator Analysis Plans. These plans provide
a portable and self-contained way for integrating KPI measurements into the
application providers overall management. In future work, we want to analyze how
to embed requesting TOSCA management fully automated into ITIL processes
and how the presented KPI-APs may be employed to achieve this.



30 Christoph Demont et al.

4 Christoph Demont et al.

References

1. APM Group Ltd: O�cial ITIL Website (2013), http://www.itil-officialsite.

com/

2. Gabler Wirtschaftslexikon: Key Performance Indicator (KPI) (2013), http://

wirtschaftslexikon.gabler.de/Definition/key-performance-indicator-kpi.

html

3. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0. Working Draft 14 (November 2012), http://www.tosca-open.org

4. Rajan, S.S.: Cloud Computing Application Management and Lean ITIL. Cloud
Computing Journal (10 2011)



Fast soundness verification of workflow graphs

Thomas M. Prinz

Friedrich Schiller University Jena, Germany

Abstract. This paper shows a new approach to check the soundness
of workflow graphs. The algorithm is complete and allows a very good
localization of the structural conflicts, i.e. local deadlocks and lack of
synchronizations. The evaluation shows a linear processing time in the
average and an up to quadratic in the worst case.

Keywords: Soundness, Workflow Graphs, Deadlock, Lack of Synchro-
nization, Localization

1 Introduction

Creating a business process is accompanied by control-flow errors, which is shown
by various studies [1, 2]. These errors evoke wrong or unexpected results and
restricts the correct simulation and execution of business processes [1].

We deal with business processes as workflow graphs [3–5]. Formally, a workflow

graph is a directed graph WG = (N, E) at which N consists of activities, fork,
join, split, merge nodes and one start node as well as one end node. (1) An
activity has exactly one incoming and exactly one outgoing edge, (2) a fork or
split node has exactly one incoming and at least two outgoing edges, (3) a join
or merge node has at least two incoming edges and exactly one outgoing edge,
and (4) each node n œ N lies on a path from the start to the end node. Figure 1
illustrates an example of a workflow graph. We use the notion •n to describe all
predecessor nodes and n• to describe all successor nodes of a node n.

We call a workflow graph simple if and only if the predecessors and successors
of each fork, join, split, merge, start or end node are activities, e.g., the workflow
graph of Figure 1 is simple. Workflow graphs observed by this paper are simple,
contain one start and one end node as well as cycles. All splits and merges have
an XOR semantic and all forks and joins have an AND semantic. The restriction
of simple workflow graphs is not a limitation, because a transformation of a
common workflow graph to a simple one is possible in O(E) (see appendix).
The execution of such a workflow graph starts in an initial state that means the
outgoing edge of the start node owns one token.

As structural correctness criterion of workflow graphs, the classical notion of
soundness [4] is used in this paper. This notion was introduced on workflow nets.
[1] has shown that a workflow graph is a so called free-choice workflow net and
the soundness of such a graph corresponds with the absence of local deadlocks

(for short LD) and lack of synchronizations (for short LoS) [3, 1]. To introduce



32 Thomas Prinz

A1 A2

A6

A3

true

false
A7

A5

A4

A9

A10

true

A8

false

S

M1

D1

D2

M2

J

F E

Fig. 1: A workflow graph containing a local deadlock and lack of synchronization

both error types we take a look at the simple example of Figure 1 taken from [1]
that includes a LoS and a LD.

If a token travels the true edge leaving the split D1 in our example, then
the token will reach the join J via the upper incoming edge. However, there is
no other token that will ever arrive at the lower incoming edge of J . Such a
reachable state is called local deadlock. Formally, a local deadlock is a reachable
state s of the workflow graph that has a token on an incoming edge e of a join
node such that each reachable state from s also contains a token on e [1].

When a token reaches the false edge leaving the split D1, the token enables
the firing of fork F . So one token reaches M2 and it is possible that the other
token will firing the cycle D2, M1, D1, F . The result is a possible state with
multiple tokens on the incoming edge of M2. Such a reachable state is called
lack of synchronization. Formally, a lack of synchronization is a reachable state s
containing an edge that has more than one token [1].

The analysis of the absence of LoSs and LDs is well established by various
studies (see [3–6] for example). However, the processing time of the current
approaches is at least cubic or the workflow graphs are critically restricted
(acyclic, incomplete or well-formed). The diagnostic information also ranges from
no information (fast algorithms) over displaying the failure trace (Petri net based
techniques) to detailed information (for restricted workflow graphs). A good
overview over such techniques gives the introduction of [6]. Therefore, it exists a
divergence of fast or informative algorithms.

The remainder of this paper is structered as follows: Sect. 2 introduces
the basic ideas and marginal cases of our new approach. These ideas will be
complemented in Sect. 3 following an evaluation of our approach in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Basic idea and marginal cases

Our basic idea is to detect LD and LoS structurally by finding entry points which
control the firing of a join node. Then we assume a state allowing the firing of
such an entry point. Further, we find each LD and LoS isolated. That means,
such an error can not occur if a LD or LoS occurs before. These isolated LDs
and LoSs are called potential. The task is to determine entry points to detect
potential LDs and LoSs.



Fast Soundness Verification of Workflow Graphs 33

Therefore, we introduced so-called bottle necks, which are fork or split nodes,
e.g., the nodes D1, F and D2 of Figure 1. A bottle of a bottle neck nb is a
subgraph Gnb = (Nnb , Enb) of the workflow graph such that each path from the
start node to a node n œ Nnb contains nb or a merge node nm œ Nnb . From this
it follows that, Nnb contains only a join node nj if •nj ™ Nnb is valid. If the
bottle nb contains a merge node nm that has a predecessor node np beeing not in
Nnb , then no state should be reachable from the initial state which has a token
on the incoming edge of nb and on the edge (np; nm) (see Figure 2). A LoS is
reachable having two tokens on the outgoing edge of nm.

For example the bottle of D1 of Figure 1 is the sub graph containing all nodes
except S and A1 and the bottle of F2 of Figure 3 contains the nodes A3 and A4.

bottle neck

nm

bottle

nb

np

Fig. 2: A bottle that contains a merge
node

A2

A1

A3

A4

F2

F1
J

... ...

Fig. 3: A sub graph of a workflow
graph

After all, an entry point of a join node nj is a bottle neck with a bottle
containing nj , e.g., the entry points of J of Figure 1 are D1, F and D2 and an
entry point of J of Figure 3 is F1.

If a join node nj has no entry point, then there exists no bottle neck, which
has a bottle containing all predecessors of nj . That means at least one predecessor
of nj is only reachable from the start node when nj fires. A LD is reachable.

Lemma 1. If a join node has no entry point, a potential local deadlock occurs.

An entry point of a join node is named immediate if and only if there exists
at least one path from the entry point of the join node containing no other entry
point of the join. If we determine all immediate entry points of a join node, then
the join node is only reachable over these nodes. So all entry points of J in our
example of Figure 1 are immediate, e.g., there is a path (A5, M2, A4) from F to
J with no entry point.

Now, we consider an immediate entry point of a join node nj being a split
node ns. There is a path from ns to nj containing no other immediate entry
points. So if no LD occurs on this path, it is possible that after firing ns a token
reaches exactly one incoming edge of nj . nj cannot fire. If we assume that, at
this point the entry point or another entry point fires, a token can reach the
same incoming edge of nj over again. So either a LD occurs or a LoS is possible.



34 Thomas Prinz

Lemma 2. If a join node has at least one split node as immediate entry point,

a potential local deadlock is reachable.

We call an entry point of a join node nj complete if and only if no path from
the entry point to nj contains an other entry point of nj . We assume that, nj

has a non-split immediate entry point ne which is not complete. We know, there
is a path P1 from ne to nj which contains no other immediate entry point. Let
us assume that, P1 contains the edge e = (x, nj). We know, there is also a path
P2 from ne to nj containing another immediate entry point ni. Because ni is also
an entry point of nj , there is a path P3 from ni to nj containing also the edge
e. If ne fires and there is no LD on the observed paths, then a token reaches e
and the incoming edge of ni. ni can also fire and a token reaches also e. A LoS

occurs. This situation is only avoidable if a LD occurs.

Lemma 3. If a join node has at least one immediate entry point being not

complete and not a split node, a potential lack of synchronization is reachable.

Definition 1 (Well-formed). The immediate entry points of a join node are

called well-formed if and only if none of the lemmata 1, 2 and 3 is valid.

3 Processes

Let us consider all paths from all immediate entry points to exactly one predecessor
of a join node nj (and so to an incoming edge) which contains no entry point
of nj . We merge all these paths to a sub graph P = (NP , EP ) called process

of nj , because (related to a business process) such a process can be executed
from one entity (like a human or machine). nj is named terminator T (P ) of the
process, because this node ends the execution of the process. Supplementary, we
define a main process for generalization. A main process is the process containing
all nodes of a workflow graph except the start and end node. For example, the
processes in figure 1 are {A3, M2, A4, A5} and {A7, D2, A9} and the main process
is N \ {S, E}. At this point, we need the simpleness of a workflow graph, because
every process should have at least one node.

Hence, we observe a join node nj having only well-formed immediate entry
points. If we assume that on the join node nj with its complete entry points
NEP occurs a LD, then we conclude that at least one process P of nj contains a
split node ns with ns• ”™ NP . On a LD is at least one token on an incoming edge
and at least no token on another. We assume P is the process which contains the
predecessor node np of nj and (np, nj) bears no token. One entry point ne œ NEP

has to been fired. There exists a path from ne to np. So if we assume there is no
LD on this path, a token can travel from the outgoing edge of ne to the outgoing
edge of np. How could a token leave this path? The only way is a split node
which lies on the path and has a successor node with no path from this node
to np. That means this successor node is not in the process. So our assertion is
correct.



Fast Soundness Verification of Workflow Graphs 35

Lemma 4. If a process P = (NP , EP ) contains a split node ns with ns• ”™ NP

a potential local deadlock is reachable.

For example the process {A7, D2, A9} contains the split node D2 which
satisfies the conditions to cause a potential local deadlock.

Processes have nice properties on closer inspection. If a process P contains a
join node nj , each process P Õ which ends in nj is a sub graph of P called sub

process (written P Õ µ P ) and P is called super process respectively. This results
on the definitions of processes and entry points. Furthermore the process P is
called active on a node n if there is no sub process of P containing n. We called
it active, because an entity processes P actively regarding a business process
engine, while passive processes have to wait.

Each LoS starts in a fork node which produces two tokens joining the same
edge later. So the detection of LoSs is the detection of processes which are active
on the successor nodes twice or more. Because of the definition of an active
process, there is no join node on the path to its terminator splitting the process.
It has to be a merge node. This results in a LoS (see Figure 4 and 7). But an
active process could be hidden by another active process (see Figure 5 and 6).
If a sub process P Õ of a process P starts in a fork node nf , we can assume a
(maybe infinitesimal) short time between the firing of nf and the activation of
P Õ, in that P is also active. We name these hidden active processes simply hidden

active. Altogether we can express the following lemma.

nmnf

Fig. 4: Case 1

nm
nf nj

Fig. 5: Case 2

nm
nf nj1

nj2

Fig. 6: Case 3

nf

nm

Fig. 7: Case 4

Lemma 5. Let M be a multi set containing all active and hidden active processes

of all successors of a fork node. If M contains a process twice or more, then a

potential lack of synchronization is reachable.

For example the fork node F in our example contains the active main process
twice in its successor nodes (once active and once hidden active).

Now we have determined all potential LDs and LoSs by handling marginal
cases and processes and can exactly localize them by the entry points, the
terminators, the processes and split and fork nodes to visualize them. Because
a potential LD is not only reachable from the initial state if another potential
LD or LoS occurs, and a potential LoS is not only reachable if a potential LD

occurs, we can determine the soundness of a workflow graph. Altogether we can
formalize the following lemma.
Theorem 1. A workflow graph is sound if and only if it contains neither a

potential local deadlock nor a potential local deadlock.



36 Thomas Prinz

The basic algorithms to determine the entry points, immediate entry points
and processes are in the appendix A. It is reasonable that |E| Æ 2 ú |N | is valid
for simple workflow graphs. Altogether, the processing time is in worst case
quadratic to N .

4 Evaluation

We have implemented the algorithm in Java and stopped the soundness verifica-
tion if the algorithm found the first potential error. It followed the approach of [1].
The benchmark was taken from http://www.service-technology.org/soundness,
is splitted in 5 libraries (A, B1, B2, B3 and C) and was also used by [1].
The input was a PNML file which was parsed and transformed from a Petri
net to a workflow graph. So we could compare it with other tools like LoLA
(http://www.informatik.uni-rostock.de/tpp/lola/).

Our runtime environment was a system with a 64 bit Intel R• CoreTM2 CPU
E6300 processor and 2 GB main memory running a Linux 3.1.0-1.2-desktop
x86 64 kernel and an Oracle OpenJDK JRE 1.6.0 22. Because of the hot spot
compiler of the JRE, we created a startup as long as the optimizing system
needed to optimize the most hot methods. We ran each of the 5 libraries 10 times,
removed the two best and worst results and calculated the average run time.
Furthermore the number of nodes, edges and explored nodes were determined.
We chose LoLA for comparison and ran them on the same machine like our
algorithm and subtracted the read and build time of the petri net. Altogether we
determined only the validation time and no transformations. Table 1 shows the
results.

Library: A B1 B2 B3 C
Processes/Sound 282/152 288/107 363/161 421/207 32/15
Avg./Max. |N | 84/292 82/402 83/437 93/501 136/567
Avg./Max. |E| \ |N | 1.3/1.9 1.3/1.9 1.3/1.9 1.2/1.7 1.1/1.3
Avg./Max. |vis.N | \ |N | 3.6/7.1 3.4/7.9 3.5/10.8 3.4/7.7 2.4/7.1
Analysis time [ms] 16.4 15.4 20.7 28.4 1.7
Analysis time LoLA [ms] 2373.0 2395.9 3126.1 3651.3 303.8
Per process avg./max. [ms] 0.06/0.28 0.06/0.36 0.06/0.47 0.07/0.69 0.06/0.31
Per process LoLA avg. [ms] 8.5 8.4 8.7 8.7 9.5

Table 1: Results of the benchmark evaluation

Compared to the results of LoLA we determined the same sound and unsound
processes. So it accompanies with the correctness of our approach.

The results showed the number of edges grow linear with the number of nodes
and that the number of split, fork and join nodes is less (< 20%). It accompanies
with the nearly linear number of max. approx. 11-times inspections of nodes. So
the runtime results showed that our approach is nearly linear in the worst case.
This is also represented by the analysis times of the libraries. They were approx.
150-times faster as the times of LoLA in average although the comparison was



Fast Soundness Verification of Workflow Graphs 37

di�cult regarding the di�erent implementation technologies. Altogether a single
process took always less than one millisecond to be validated.

To verify these results we added our complete algorithm to the Activiti

BPMN 2.0 designer (http://activiti.org). When drawing a workflow graph-like
business process, the plugin verifies the process in-time and visualizes all errors. It
underscores the e�ciancy of our algorithm and the very good error localisation.

5 Conclusion and Outlook

In this paper we presented and evaluated a new approach to detect structural
conflicts in workflow graphs, i.e. the soundness. The approach and the resulting
algorithm found all structural conflicts and was able to localize them. We showed
a soundness verification is possible during the drawing of a business process. This
is possible, because the algorithm has an up to quadratic average run time.

The main issue for future work are to present a complete proof of our approach,
to use the introduced processes to verify the operability of workflow graphs and
to transform data-extended workflow graphs into a CSSA-based form.

Acknowledgments

This paper was written in the context of the SimProgno research project (support
code: 01IS10042B) funded by the German Federal Ministry of Education and
Research. Special thanks to Wolfram Amme for discussing the ideas of this paper.

References

1. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5) (May 2011) 448–466

2. Mendling, J.: Empirical studies in process model verification. In Jensen, K., Aalst,
W.M., eds.: Transactions on Petri Nets and Other Models of Concurrency II, Berlin,
Heidelberg, Springer-Verlag (2009) 208–224

3. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2) (April 2000) 117–134

4. Aalst, W.M.P.v.d., Hirnschall, A., Verbeek, H.M.W.E.: An alternative way to analyze
workflow graphs. In: Proceedings of the 14th International Conference on Advanced
Information Systems Engineering. CAiSE ’02, London, UK, UK, Springer-Verlag
(2002) 535–552

5. Eshuis, R., Kumar, A.: An integer programming based approach for verification and
diagnosis of workflows. Data Knowl. Eng. 69(8) (August 2010) 816–835

6. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through sese decomposition. In: Proceedings of the
5th international conference on Service-Oriented Computing. ICSOC ’07, Berlin,
Heidelberg, Springer-Verlag (2007) 43–55



38 Thomas Prinz

A Appendix

Algorithm 1 Transforming a workflow graph into a simple one with processing
time: O(E).
Input: A workflow graph W G = (N, E)
Output: A simple workflow graph W GÕ = (N Õ, EÕ)
1: for all e = (ns, nt) œ E do
2: N Õ Ω N Õ fi {ns, ne}
3: if ns and nt are not activities then
4: N Õ Ω N Õ fi {na}, na is a new activity
5: EÕ Ω EÕ fi {(ns, na), (na, nt)}
6: else
7: EÕ Ω EÕ fi {e}

Algorithm 2 Determining a bottle for one bottle neck with processing time:
O(N + E).
Input: A fork or split node n of a workflow graph W G = (N, E)
Output: A set NB of nodes of the bottle of n
1: for all ns œ n• do
2: determineBottle(ns)
3: function determineBottle(nc)
4: if nc /œ Nb then
5: if nc is a join node then
6: if •nc ™ NB then
7: NB Ω NB fi {nc} and mark n as entry point of nc

8: for all ns œ nc• do
9: determineBottle(ns, NB)

10: else
11: NB Ω NB fi {nc}
12: for all ns œ nc• do
13: determineBottle(ns, NB)

Algorithm 3 Determining a subset of immediate entry points and one process of
a join node respectively with processing time: O(N + E).
Input: Predecessor node np of a join node nj and the entry points Ne of nj

Output: Process P = (NP , EP ) and a subset of immediate entry points Ni of nj

1: determineProcess(np)
2: function determineProcess(nc)
3: if nc /œ NP then
4: if nc œ Ne then
5: Ni Ω Ni fi {nc}
6: else
7: NP Ω NP fi {nc}
8: for all np œ •nc do
9: determineProcess(np)



Detecting Interoperability and Correctness
Issues in BPMN 2.0 Process Models

Matthias Geiger and Guido Wirtz

Distributed Systems Group, University of Bamberg, Germany
{matthias.geiger,guido.wirtz}@uni-bamberg.de

Abstract. Although BPMN 2.0 is an international standard widely used
in practice, interoperability of process models is still an issue. Even
between tools and engines claiming to be BPMN compliant the model
exchange is often complicated or impossible as the tools produce incor-
rect model representations or do not support the standardized BPMN
serialization format. In this position paper we present reasons for interop-
erability issues and show why defining a set of constraints derived from
the standard is crucial to fix an important subset of those issues. We are
currently developing a tool which can check this set of rules automatically.

Keywords: BPMN 2.0, Interoperability, Correctness, XML Serialization,
Standard compliance

1 Motivation

Since its o�cial release in January 2011 the Business Process Model and Notation
(BPMN) [8] is used more and more in academia and by practitioners alike. The
variety of BPMN models spreads from simple workflow descriptions consisting of
only a few sequential tasks for illustration purposes to complex models including
data modeling and calls to existing software systems in order to be executed
on BPMN compliant process engines. For the former process models, which are
often drawn by hand or using tools like Microsoft PowerPoint, interoperability
and correctness are not of major interest. But correct and interoperable models
are essential when a process definition should be deployed on a BPMN engine
like Activiti1 or when models are to be exchanged between di�erent tools. Model
exchange and refinement is often performed in interdisciplinary teams in which
usage of the same used modeling tools cannot be assumed. Therefore the need
for a standardized BPMN serialization format to enable model interchange which
also ensures “correct” process models is widely accepted2.

In fact, BPMN version 2.0 [8] introduces such a standardized serialization
format based on a XML Schema Definition (XSD). Unfortunately, this serialization
format is not used or correctly/fully implemented by most tool vendors and
therefore real interoperability is still far from given.
1

http://www.activiti.org

2 see for example the “BPMN-I” initiative of Bruce Silver (http://www.brsilver.com/

2011/04/05/a-profile-for-bpmn-interoperability/)



40 Matthias Geiger and Guido Wirtz

2 Reasons for Missing Interoperability

The reasons for incorrect models and therefore interoperability issues are manifold
but can be divided into two main groups:

– Vendor Policy: The usage of a proprietary serialization format, missing
import and (especially) export functionality is often intentionally used by
vendors. Either the ability to switch to competitive products is limited (vendor
lock-in) or a simpler format is used to comply to the internal meta model.
This is especially the case when a tool is not initially designed for BPMN
models but an existing process and workflow modeling tool is enhanced to
deal also with BPMN models.
For instance, the BizAgi Process Modeler3 is not able to handle BPMN
models saved in the format proposed by BPMN [8]. The Signavio Process
Editor4 supports importing and exporting BPMN compliant XML-files but
heavily uses extension elements which hinders the usage of Signavio models
in other tools.

– Implementation Problems: Although vendors might be willing to provide
interoperable model definitions, actual interoperability is not in place, because
the constraints raised by the standard are overlooked, misinterpreted or
faultily implemented so that incorrect BPMN models might be exported.
Since the o�cial release of BPMN 2.0, various ambiguities, inconsistencies
and faults have been revealed5 which further inhibit the successful usage of
BPMN [1].

3 Creating a Standard-based Rule Set for XML
Serialization and Checking the Extracted Rules

As vendor policies may not be a�ected easily, we focus on giving support for
implementation issues. In order to observe all rules it is needless to say that an
overview of all constraints stated in [8] is essential. Unfortunately, BPMN falls
short in providing such an overview.

Sources for constraints in the standard document are the running text, ta-
bles, class diagrams and XSD excerpts. The extraction of rules from the latter
sources is rather straightforward (e.g., mandatory attributes, cardinalities, value
constraints). In contrast to this, constraints in the running text are harder to
identify and frequently some interpretation of the text is needed. We worked
through the standard document and in a first iteration we derived more than
300 rules.

Moreover, in about fifty cases inconsistencies between the text and/or the
class diagrams and the XSD have been revealed. Frequently some attributes of
elements are defined as mandatory in the text and the class diagrams, but the
3

http://www.bizagi.com/modeler/

4
http://www.signavio.com

5 e.g., see the issue tracking list http://www.omg.org/issues/bpmn2-rtf.open.html



Detecting Interoperability and Correctness Issues 41

schema definition marks the same attribute as optional. To give an example:
Even the definition for the BPMN root element definitions is a�ected by this
problem: Table 8.1 in [8, p. 53] states that the attribute name is mandatory. In
contrast to that, this attribute is completely missing in the XSD excerpt in Table
8.3 [8, p. 54] and is defined as optional in the normative XSD schema6.

In order to improve and check the completeness and correct interpretation of
our rule set, we are currently cross-checking it with other less extensive collections
of BPMN constraints7 and with the consistence checks integrated in various
tools8.

Based on a consolidated list of rules for BPMN models, it is possible to check
whether a serialized process model is consistent to this rule set (and therefore to
the standard itself).

Parts of the extracted rules can already be checked by performing a XML
schema validation. An example for such rules are value limitations, as for the
attribute gatewayDirection of a BPMN Gateway. Here only the values ’Un-
specified’, ’Converging’, ’Diverging’ or ’Mixed’ are allowed. This restriction is
realized as a XSD SimpleType restricting Strings (see [8], p.91).

However the overwhelming majority of constraints cannot be covered by
schema validation. Specific examples can also be found in the context of BPMN
Gateways: Gateways have incoming SequenceFlows which are realized as incoming

sub elements that refer to a SequenceFlow definition using a xs:QName reference.
With XML schema validation, a reference to an arbitrary or even non-existent
BPMN element would be regarded as correct. Moreover, depending on the value of
the attribute gatewayDirection the number of incoming and outgoing sequence
flows has to be limited in a di�erent manner (see [8], p.91) which is also not
checkable by schema validation.

To tackle these issues, we are currently developing a tool to check all extracted
rules which are not covered by schema validation yet.

4 Related Work

Academic research mainly concentrates on semantic validation, verification and
correctness checks for BPMN models [3, 5, 9], assuming that the BPMN models
used already comply to the standard. In contrast to this, we concentrate on issues
regarding the serialized form of process models. Hence, in this paper the term
correctness refers to compliance to the constraints postulated by the standard [8]
and not to semantic correctness.

Closer related to our work is [2] which proposes a meta model and a serializa-
tion format for the prior BPMN Version 1.1 [7] including some checks regarding
reference existence and leveraging XPath for more sophisticated validations. Due
to the major revisions in BPMN 2.0, most parts of this approach are outdated
6 see http://www.omg.org/spec/BPMN/20100501/BPMN20.xsd

7 e.g., see Bruce Silver: BPMN Method & Style, 2nd edition, 2011, p. 135-139
8 e.g., the itp-commerce modeling tool checks a series of constraints (see: http://help.

itp-commerce.com/index.php?id=81&L=0)



42 Matthias Geiger and Guido Wirtz

by now, as BPMN 2.0 provides a standardized XML interchange format. Never-
theless, the proposed usage of XML Technologies like schema validation which is
now used in the current version of the standard is able to check some basic rules
as stated above.

A good example for the importance and practical benefits of a list of relevant
constraints for a process language standard is the Web Services Business Process
Execution Language (BPEL) [6]. BPEL provides a list of 95 static analysis rules
which cannot be checked using a simple XML schema validation, but should
be checked by BPEL engines during the deployment process. Using such a list
tailored to BPMN, it is much easier to generate test cases and verify standard
conformance such as presented for BPEL in the tool betsy [4].

5 Conclusion and Outlook

The main contribution of our work will be an extensive set of constraints stated in
the standard and a tool checking these constraints. These contributions provide a
basis for the successful practical usage of BPMN. The rule set and the tool may
be used by modeling tool vendors and engine developers to check if their software
generates, respectively is able to import and deploy standard compliant documents.
It might be used during import stages in order to reject non-compliant models
or to benchmark di�erent tools/engines regarding their standard compliance.

As a side e�ect of our work we are able to report several issues to the BPMN
2.1 Revision Task Force to improve the upcoming version of BPMN.

References

1. E. Börger. Approaches to modeling business processes: a critical analysis of BPMN,
workflow patterns and YAWL. Software & Systems Modeling, 11:305–318, 2012.

2. M. Chinosi and A. Trombetta. Modeling and Validating BPMN Diagrams. In
B. Hofreiter and H. Werthner, editors, CEC, pages 353–360. IEEE Computer Society,
2009.

3. R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis of business
process models in BPMN. Information and Software Technology, 50(12):1281 – 1294,
2008.

4. S. Harrer, J. Lenhard, and G. Wirtz. BPEL Conformance in Open Source Engines. In
Proceedings of the 5th IEEE International Conference on Service-Oriented Computing
and Applications (SOCA’12), Taipei, Taiwan. IEEE, December 17-19 2012.

5. N. Lohmann, E. Verbeek, and R. M. Dijkman. Petri net transformations for business
processes - a survey. T. Petri Nets and Other Models of Concurrency, 2:46–63, 2009.

6. OASIS. Web Services Business Process Execution Language, April 2007. v2.0.
7. OMG. Business Process Modeling Notation, v1.1, January 2008.
8. OMG. Business Process Model and Notation (BPMN) Version 2.0, January 2011.
9. P. Wong and J. Gibbons. A Process Semantics for BPMN. In Formal Methods and

Software Engineering, LNCS, pages 355–374. Springer Berlin Heidelberg, 2008.



A new approach for WS-Policy Intersection
using Partial Ordered Sets

Abeer Elsafie, Christian Mainka, and Jörg Schwenk

Horst Görtz Institute for IT-Security, Ruhr-University Bochum, Germany
{abeer.elsafie, christian.mainka, joerg.schwenk}@rub.de

Abstract. WS-Policy is a framework that can be used to describe as-
sertions for web services message exchange. In the context of Service
Oriented Architectures and Clouds, where web services are belonging to,
machine-to-machine communication is one of its core ideas. When those
machines try to apply WS-Policy, mainly two events can occur: First,
the machine-exchanged policies have common assertions – there is an
intersection. Second, there is no direct intersection and the participants
must reach an agreement by minimal adjustments to the policies. This
paper introduces a new approach for reaching intersection by computing
adjustments to the policies using partial ordering.

Keywords: WS-Policy Intersection, Partial Ordered Sets, Hasse Diagram

1 Introduction

In the field of web services, requirements and capabilities can be described using
XML according to the WS-Policy specification [1]. The policies can be applied
to the web services message exchange, which is commonly machine-to-machine
communication with multiple participants, for assuring security goals. This leads
to the need for WS-Policy intersection, a technique used when two or more
web services want to communicate and fulfill each others policy. Currently, this
approach can only handle the case that intersection within the participating
policies exists [2]. Otherwise it fails and the further communication cannot be
achieved.

Hence, our motivation is to find a way to make intersection possible even
in the case that there is no direct intersection by adjusting one or both party’s
policy, e.g. by adding some policy aspects. This is achieved by a multi-layer ap-
proach: First, every WS-Policy, which can be seen as a set of Boolean terms, is
converted into its disjunctive normal form (DNF), so that policies are easy to
compare and finding matching terms is simple. In the case that there is a match,
the decision for the participants is obviously done. If there is no direct inter-
section, this paper introduces a model for an arbitrary number of parties, that
computes these adjustments using partial order sets to enforce policy intersection
for all participants.



44 Abeer Elsafie, Christian Mainka, and Jörg Schwenk

2

2 Foundations

2.1 WS-Policy and Policy Intersection

WS-Policy is a framework for describing policies using XML [3, 1]. In the con-
text of web services, it is commonly used to specify which parts of a message
should be signed or encrypted using WS-SecurityPolicy [4]. The structure of a
WS-Policy can be seen as a Boolean term, but written in XML. It consists of
an enveloping <Policy/> element which can contain arbitrary AND (element:
<All/>) and XOR (element: <ExactlyOne/>) expressions. For each term, there
exists a disjunktive normal form (DNF). It is an XOR-junction of propositions
derived from the compact form using boolean algebra [5]. Consider the following
example, which does not use any XML for simplicity:

A
1

^ (A
2

� A
3

)
DNF
= A

1

^ A
2| {z }

Alternative 1

� A
1

^ A
3| {z }

Alternative 1

From the DNF , one can easily see the policy alternative: They are a bundle
of assertions which must be fulfilled.

The WS-Policy Intersection process identifies compatible policy alternatives
included in all parties policies or returns nothing if there are no matches [6].
Two alternatives are compatible, if the sets of included assertions are identical.

2.2 Ordered Sets and Hasse Diagrams

A partially ordered set (poset) is a mathematic tool generalizing the concept
of arranging and ordering elements. In a poset, there exists a relation between
pairs of elements, e.g. the ””-relation, so that the elements can be compared.
When this relation exists for each possible pair, then the poset is called a chain
(or total ordered set). In addition a poset in which no two distinct elements are
comparable is called antichain.

A Lattice is an ordered set where every pair of elements has a least upper
bound (LUB) and a greatest lower bound (GLB). In our approach we assume
that the posets are all Lattices.

A Hasse or Lattice diagram is a visualization of the finite poset in the form
of a drawing, in which nodes are elements of the poset and arrows between
related nodes represent the order relation between these elements [7, 8]. In the
next section we introduce an example providing a detailed overview of the usage
of Hasse diagram.

3 WS-Policy Intersection Model

The evaluation of WS-Policy Intersection consists of two main layers as shown
in Figure 1:

The preparation layer is responsible for converting each policy into its corre-
sponding DNF . This is achieved either manually or using an software-tool [9]



A new approach for WS-Policy Intersection using Partial Ordered Sets 45

3

Policy1

Policy2

...

Policyn

Preparation

Generate DNF

Intersection?

Evaluation

Bound Extract

Decide

N
o

Yes

Result

Fig. 1. Evaluating WS-Policy Intersection Model.

and is outside the scope of this research. Afterwards, the policy intersection
examination unit compares the DNF policies and forwards the results to the
evaluation layer.

If there is intersection, which means compatible alternatives exist, they are
directly forwarded to the decision making unit, which chooses the strongest
alternative.

In the case of no intersection, the bound extraction unit takes part. It first
identifies all ordered sets, which can be chains like AES

128

< AES
256

or anti-
chains which cannot be compared, e.g. SignHeader

and SignBody

. Afterwards, all
sets are combined to one Hasse diagram as shown in Figure 2.

;

{SignHeader

} {AES
128

} {SignBody

}

{AES
128

, SignHeader

} {AES
256

} {AES
128

, SignBody

}

{AES
256

, SignHeader

} {AES
256

, SignBody

}{AES
128

, SignHeader+Body

}

{AES
256

, SignHeader+Body

}

A1

P1
A1

P2

LUB

GLB

Fig. 2. Signed Part and cryptographic suite combined into one Hasse diagram.

Consider the two policies P
1

and P
2

, having the alternatives A1

P1
and A1

P2
as

shown. Obviously, they are not compatible. Using the Hasse diagram, the least
upper bound (LUB) and the greatest lower bound (GLB) can be easily extracted.
In general if we consider that the posets used are all lattices, where each two
elements have a LUB/GLB, then we can easily use the meet and join for finding
these bounds [8]. Finally the bounds are forwarded to the decision unit, which
has to decide if the GLB or either the LUB should be used.

4 Related Work

Researchers in [10] investigated a mechanism for calculating compatibility of
alternatives. An approach for comparing policies and checking compatibility be-
tween alternatives in terms of its assertions to reach intersection is shown in [11]



46 Abeer Elsafie, Christian Mainka, and Jörg Schwenk

4

and [12]. Policy reconciliation algorithm, a technique to reach policy agreement
between two party communication, is introduced in [13]. Another research using
a web ontology language (OWL-DL) is based on the idea that policy asser-
tions and alternatives are mapped in to program classes using OWL to measure
compatibility [6]. Our research focuses on how to examine intersection and find
solution for policy agreement by means of partial ordering.

5 Conclusions and Future Work

This paper presents a model for WS-Policy Intersection using Partial ordered
sets. It is the first solution which is able to (1) handle more than two parties and
(2) makes proposals for the case that the policies are not directly compatible.

For future work we plan to investigate a real protocol for multi-party negoti-
ation and additional, an implementation which will show the practical usability.

References

1. W3C Recommendation, “Web Service Policy 1.5 - Framework,”
http://www.w3.org/TR/ws-policy/, Sep. 2007.

2. ——, “Web Service Policy Intersection,” http://www.w3.org/TR/ws-policy/, Sep.
2007.

3. ——, “Web Service Policy 1.5 - Primer,” http://www.w3.org/TR/ws-policy-
primer/, Nov. 2007.

4. OASIS Standard, “Web Service Security Policy,” http://docs.oasis-open.org/ws-
sx/ws-securitypolicy/, Feb. 2009.

5. J. Eldon Whitesitt, Boolean algebra and its applications. Courier Dover, 1995.
6. V. Kolovski, B. Parsia, Y. Katz, and J. Hendler, “RepresentingWeb Service Policies

in OWL-DL,” in In International Semantic Web Conference (ISWC). Springer,
Nov. 2005, pp. 461 – 475.

7. W. Strunk, Jr. and E. B. White, Order Relation, 3rd ed. Macmillan, 1979.
8. M.-C. van Leunen, Partial order. Knopf, 1979.
9. T. A. S. F. Group, “The Apache Software Foundation,”

https://ws.apache.org/neethi/, Jul. 2012.
10. T. Lavarack and M. Coetzee, “Considering Web Services Security Policy Com-

patibility,” in The 9th Annual Information Security for South Africa Conference,
(ISSA 2010). IEEE Press, Aug. 2010, pp. 1 – 8.

11. B. Hollunder, “Domain-Specific Processing of Policies or: WS-Policy Intersection
Revisited,” in IEEE 7th International Conference on Web Service (ICWS2009).
IEEE Press, Jul. 2009, pp. 246 – 253.

12. S. Hudert, T. Eymann, H. Ludwig, and G. Wirtz, “A Negotiation Protocol De-
scription Language for Automated Service Level Agreement Negotiations ,” in
Commerce and Enterprise Computing, 2009. CEC ’09. . IEEE Press, Aug 2009,
pp. 162 – 169.

13. A. P. P McDaniel, “Methods and limitations of Security Policy Reconciliation,” in
2002 IEEE Symposium on Security and Privacy. IEEE Press, May 2002, pp. 73
– 87.



Challenges in Supporting a Goal-Oriented Enterprise 
Architecture Analysis 

Evellin C. S. Cardoso 
Business Process Technology (BPT) Chair 

Hasso Plattner Institute, University of Potsdam,  
Prof. Dr. Helmert-Str. 2-3, D-14482 Potsdam, Germany 

evellin.cardoso@hpi.uni-potsdam.de 
 

Abstract. Enterprise Modelling is a discipline which tries to capture and reason 
about the distinct dimensions (e.g. structure, strategies and processes) involved in 
organizations by means of visual models. In this work, we are interested in using 
Enterprise Architectures to gain an understanding of the enterprise to promote a 
goal-oriented enterprise analysis. This paper describes the current state of art in 
literature of enterprise architecture and correlated areas and outline research 
questions that represent the open challenges that must be faced to promote this goal. 
In particular, the description of literature and the research questions are made in 
terms of the languages that model the enterprise architecture as well as the 
techniques that support architectural analysis.  

Keywords: enterprise architecture, enterprise analysis, goal-oriented enterprise 
analysis, goal-orientation 

1 Introduction 

Mainly aiming at staying in business or seeking for higher profits, organizations today 
need support for fostering innovation and boosting production. To achieve both goals, it 
is crucial that organizations develop a deep understanding regarding their different 
dimensions, such as structure, strategies and processes. Such understanding can emerge 
through the discipline of Enterprise Architecture (EA) [1] which tries to capture and 
reason about these distinct dimensions or viewpoints [1] of the enterprise by means of 
visual models.  

Among these viewpoints,   the   domain   of   “motivation”   has   been   recognized   as   an  
important element of enterprise architectures [2]. Goal modeling allows architects to 
systematically express the choices behind multiple alternatives and explore new possible 
configurations for an organizational setting. This is essential for business improvement 
once  changes  in  a  company’s  strategy  and  business  goals  have  significant  consequences 
within all domains of the enterprise. 

Since changes in all organizational domains must be synchronized with the goal 
domain, in this work, we are interested in gaining an understanding of how these changes 
occur in the enterprise by promoting a goal-oriented enterprise analysis. The objective of 
this paper is to describe the current state of art in literature of EA and correlated areas in 
order to address this research problem. Furthermore, we outline the open challenges to 
promote this research goal by proposing research questions.  



48 Evellin Cardoso

During the literature review, we have noticed that to be able to perform such 
architectural analysis, the first step is to capture the enterprise architecture in the format 
of models. Subsequently, architectural techniques may be applied to these models. This 
observation led us to describe the literature concerning two aspects: (i) we consider the 
languages to model the EA models and (ii) we also address the methodologies and/or 
techniques in EA and related fields that support enterprise model analysis. 

The remainder of this paper is structured as follows: Section 2 describes the current 
state of art regarding the languages for modelling the EA (section 2.1) and techniques for 
architectural analysis (section 2.2). Section 3 concludes the paper with an outline of 
research questions that represent the open challenges that must be faced to promote our 
research goal. 

2 Current State-of-Art in Enterprise Architecture and Related Fields 

2.1 Languages for Enterprise Modelling 

Architecture at the level of an entire organization is denominated as Enterprise 
Architecture (EA) and can be defined as “a   coherent  whole  of   principles,  methods   and  
models   that   are   used   in   the   design   and   realization   of   an   enterprise’s   organizational  
structure, business  processes,   information  systems,  and  infrastructure” [1]. The first step 
to use some architectural approach is the documentation of enterprise descriptions 
through the use of modeling languages. 

To cope with the complexity of enterprise architecture, however, the models produced 
in these modeling languages should capture only the adequate architectural concepts [1]. 
The right set of concepts that is captured within one model depends on the purpose for 
which this model is created [1]. In our work, we create our models with a specific concern 
in mind, that is, we intend to propose a model-driven technique for goal-oriented 
enterprise analysis. With this intent in mind, we set up some requirements that guide our 
survey among several approaches in literature. We can enumerate these requirements as 
follows: 

 
1. Requirement 1 (RQ1). Since we intend to propose a model-driven approach, 

the proposals must include modeling languages to model the enterprise 
architecture; 

2. Requirement 2 (RQ2). Our approach is also goal-driven, what makes the 
inclusion of goal-related concepts an important parameter in our analysis; 

3. Requirement 3 (RQ3).  We have the purpose of providing an enterprise-wide 
analysis, leading us to focus on how the goal domain is integrated with the 
other viewpoints of the enterprise architecture.  

Starting our considerations, the concept of goal is widely used in a number of areas 
such as Requirements Engineering (RE) [3] [4], Enterprise Modeling [1] [5] and Business 
Process Management (BPM) [6] [7] [8] [9]. In particular, we have surveyed only those 
approaches that provide modeling languages (RQ1) that explicitly capture goal-related 



Goal-Oriented Enterprise Architecture Analysis 49

concepts (RQ2). Furthermore, in each approach, we have focused on how these efforts 
propose to align goals with the other elements of the approaches such as roles, business 
processes, and so forth (RQ3).   

 
Conclusion of literature review. In order to address RQ2, a careful examination of 
several areas that we may include RE, EA and BPM revealed that the predominant 
concept found in literature is the concept of goal (or objective) (a definition for the term 
is provided in section 3). Further, we also may find some other related concepts, such as 
softgoals [4] and strategies [7]. In its turn, these concepts may be related by a number of 
relationships such as AND/OR refinement [3] [4] or conflicts [3]. Concerning the 
integration of the goal domain with the other elements (RQ3), considering that such goal 
orientation is adopted by many proposals in a large number of areas; we concluded that 
the relations of the goal domain with the other concepts in the proposals are dictated by 
the applicability of the proposal.  

2.2 Techniques and Methodologies for Enterprise Architectural Analysis 

Once we have understood which information we should capture in our model (goals, 
softgoals, strategies, etc.), their relations (e.g. AND/OR refinement) as well as the 
associations with the other elements of the EA, we need a technique/methodology to use 
this language in order to promote our goal-driven analysis. This leads us to estipulate the 
forth requirement: 

 
1. Requirement 4 (RQ4). We intend to examine the approaches that provide 

model-driven architectural analysis, in particular, goal-oriented model-driven 
analysis. 

Conclusion of literature review.  There is a large body of knowledge that addresses 
model-driven techniques. Some of them can be found in the scope of EA such as [10] [11] 
[1]. However, we have found that none of them incorporate such goal-orientation 
(although some of them present goal languages as depicted in previous section). Most of 
the model-driven techniques for process analysis are actually included in the scope of 
BPM (the majority of them also do not have such goal orientation, but exceptions can be 
found in [12]). For instance, there is a plethora of model-driven methods under the BPM 
umbrella that are generally denominated as Business Analytics methods. Among these 
Business Analytics methods, we may cite the following areas: Business Process 
(Re)design (or (re)engineering) [13] [14], Business Process Maturity [15], Process 
Controlling [16], Process Mining [17], Business Activity Monitoring [18] [8] and 
Process intelligence [19].  

3 Ongoing and Future Work 

In order to promote a goal-oriented enterprise analysis, the current literature has been 
surveyed as means to understand how the related approaches could support this research 
goal. After this survey, we have noticed that the proposals are fragmented with respect to 
the issues that must be addressed in order to solve the problem, and none of them 



50 Evellin Cardoso

addresses these issues in its entirety. This section is aimed at discussing some of these 
issues, proposing research questions that outline these open issues and depicting how the 
current approaches meet or fail these requirements. The research questions are drawn also 
in terms of the language and techniques mentioned in the previous sections. 
 

Language (support for modelling goal-related concepts). Which concepts are 
necessary for such approach (such as goals, softgoal, and strategy)? Which are the 
relations among these concepts (such as AND/OR refinement and conflicts)? 

Goal-related concepts. Goals can be defined as statements that declare desired states for 
the enterprise setting as well as the reasons and motivations (i.e., rationale) for the 
existence of the components in the other viewpoints [20], describing a desired state or 
development of the enterprise [21] [22]. The concept must be characterized with respect 
to the following attributes: 

 
1. Description. Represents the description of the goal. In all the surveyed 

approaches, goals are informally specified in natural language, although a 
formal specification is required to enable automated analysis; 

2. Level of abstraction. Since goal definitions may be stated in a broad scope 
within the organization, ranging from high-level concerns to the declarations 
of the values that must be operationalized by business processes, this 
dimension aims at classifying goals in relation to the level of abstraction. In 
that respect, some proposals [6] [23] [24] [7] present classifications about 
goal-related concepts such as mission, vision, strategy and its refinements, 
although a precise criteria for allocation of goal statements into the categories 
suggested by the proposals are still required; 

3. Ownership. Given that an EA models are a joint effort involving several 
stakeholders, we have to be able to specify the goals’ owners. These goals’ 
owner can be individuals (agents) [4] [25] or organizations (including the 
whole enterprise, organization units or roles) [26] [23] [27] [22];  

4. Hardness. This dimension distinguishes between soft and hard goals. 
Hardgoals are defined as goals whose satisfaction can be objectively defined 
[4], while softgoals have their satisfaction subjectively evaluated. Some 
approaches do not recognize this distinction, such as [27] [25] [28]; 

5. Priority. Stipulates an order for the achievement of goals [3] [22] [28];  
6. Deadline. Represents the maximum point in time that the goal can be 

achieved [22] [28]; 
7. Evaluation type. Specifies how the satisfaction of the goal must be checked 

for a given interval of time. In [22], goals have goal patterns that are 
properties that can be checked for a given state/time point or interval in order 
to evaluate if the goal is satisfied or not (this pattern have types, namely: 
achieve/cease, maintain/avoid, optimized (maximized/ 
minimized/approximated)). This proposal builds its definition on [3]; 



Goal-Oriented Enterprise Architecture Analysis 51

8. Measurement. The satisfaction of goals needs to be quantitatively evaluated. 
This is usually achieved by associating goals with Key Performance 
Indicators (KPIs) [27] [22] [28] [24].   

Goal-related relations. Goals can be related through some types of relations. The survey 
revealed that there are the following types of goal relations: AND/OR decomposition, 
conflict, influence [27], (positive/negative) contribution and means-ends [4]. 

Language (alignment of goal-related concepts with the viewpoints of EA). Which 
are the relations between the goal domain and the other domains of the EA, such as 
business process, organizational structure domains, etc?  

With our analysis of the literature, we have observed that the response of such question 
is related with the intended applicability of the model in the several areas. For instance, in 
RE and EA, goals are   aimed   at   capturing   stakeholders’   requirements for a target 
computational system (RE) or an architecture yet-to-be constructed or redesigned (EA), 
what lead them to be associated with agents/roles/stakeholders [4] [3] [21] [25] or even 
with organizational units [23] or communities [26].  In these areas, goals statements can 
also be defined on the basis of objects/resources [3] [4] since these resources can be used 
by the stakeholders in the achievement of goals. 

The only two approaches that consider goals as being linked to the normative aspect 
(rules) are the BMM model [23] and the Business Motivation Ontology [24]. Possibly, 
this can be accounted by the fact that in EA, norms may constrain the achievement of 
goals within the enterprise setting.  

Finally, the majority of the approaches recognize business processes as the most 
important asset responsible for the achievement of goals in organizations such as [5] [4] 
[29] [30] [26] [23] [21]. Some works in the discipline of BPM have been inspired by this 
goal-orientation [9] [6] [12], by adding goal-related concepts in order to overcome the 
semantic gap between high-level  enterprise’s  goals  and  the  business  processes  which  are  
responsible for implementing these goals. Other approaches are intended to provide 
additional support in business process reengineering activities [7] [31] [32]. Furthermore, 
some proposals appear in the context of BPM using ontologies [28] [24] [33] to promote 
semantic interoperability of business processes at the conceptual level with the other 
viewpoints of the enterprise. 

Concerning this problem of identifying the set of concepts in each viewpoint that have 
associations with goals (and the nature of these relations), we have already started an 
effort [34]. We observed this connection is far from trivial and not addressed by any of 
the aforementioned approaches, requiring us to consider the semantics of goals, the 
semantics of many other enterprise elements as well as the nature of the relation between 
goals and these other enterprise elements. As a consequence, we tackled the problem 
using an ontological approach [35].  

Techniques (use of BPM approaches). How BPM methods can be adapted to 
perform architectural analysis?  

Within the BPM approaches, processes can be evaluated with respect to their 
structural properties or the execution characteristics. Within the field of Business 
Process Reengineering, the approaches are concerned about guiding the (re)design of 
processes so that they contain only activities that generate value for the organization 
(structural properties of business processes). They commonly comprise recommended 
best practices [14] and other informal methods like "classic" reengineering view [13]. 



52 Evellin Cardoso

Concerning the execution characteristics of business processes, three types of analysis 
can be made [16]: past analysis to evaluate what happened in the past (Process 
Controlling [16]), real-time analysis to monitor the currently active business processes 
(Business Activity Monitoring [18] [8]) and predictive analysis to predict what may 
happen in the future (Process intelligence [19]). 

We can argue that BPM methods concentrate in the analysis and optimization of 
business process models (process viewpoint of the EA). These methods can be considered 
of great value in our approach, since we may adapt the optimization techniques in the 
process viewpoint taking the goal viewpoint into consideration. 

Further, although there is little support (or inexistent) in BPM methods to address 
optimizations in other viewpoints of the EA, the Business Process Maturity Model from 
OMG [15] could be used as an instrument of enterprise analysis, since it enables 
description of ''as-is''   enterprise’s   state,   from   the   perspective   of   process   management  
maturity [36]. This enterprise description will enable us to gain understanding of the 
current situation of the enterprise, what ultimately represents our objective of enterprise 
analysis. 

Techniques (Enhancement of enterprise modeling techniques with goal-oriented 
analysis). How enterprise analysis techniques can be enhanced with goal-oriented 
analysis? 

Current enterprise architectural techniques [1] are able to perform some types of 
analysis in EA models, such as functional analysis and quantitative analysis. Although 
these techniques are very useful for performing an enterprise-wide analysis, they still do 
not incorporate goal-oriented concepts to perform such analysis and may be used as a 
starting point in our work. 

Techniques (Adaptation of current goal-oriented analysis techniques). How 
current goal-oriented techniques from other areas can be used in enterprise analysis? 

A first effort into the incorporation of goal-oriented techniques for enterprise analysis 
is proposed in [37]. The work proposes a quantitative-reasoning based approach to model 
and simulate feedback loops of goal influences relations in the ArchiMate Motivational 
Extension language [21] [27]. Although the proposal is very useful in the scope of 
evaluating goal satisfaction, it still lacks an evaluation of goal satisfaction considering 
values that come from enterprise architectural analysis. This is an open challenge that 
may be addressed in the context of our future work. 

To summarize our discussion, after addressing the issues of language and techniques 
for enterprise analysis, we also envision that methodological guidelines for producing 
models using this language must be developed and the resulting techniques must be 
validated through real-world case studies with the purpose of validating them in practice. 

References 

 
[1]  M. Lankhorst, M. E. Iacob, H. Jonkers, L. van der Torre, H. A. Proper, F. Arbab, F. 

de Boer, M. Bonsangue and W. Janssen, Enterprise Architecture at Work - 
Modelling, Communication, and Analysis, Springer-Verlag, 3rd edition, 2012.  

[2]  J.   Zachman,   “A  Framework   for   Information  Systems  Architecture,”   IBM Systems 



Goal-Oriented Enterprise Architecture Analysis 53

Journal, pp. 276-292, 1987.  
[3]  A. Dardenne, A. v. Lamsweerde and S. Fickas, Goal-directed Requirements 

Acquisition, vol. 20, Amsterdam, The Netherlands, Elsevier Science Publishers, 
1993, pp. 3-50. 

[4]  P.  Bresciani,  P.  Giorgini,  F.  Giunchiglia,  J.  Mylopoulos  and  A.  Perini,  “Tropos:  An  
Agent-Oriented   Software   Development   Methodology,”   Journal of Autonomous 
Agents and Multi-Agent Systems, p. 203–236, 2004.  

[5]  A.-W. Scheer, ARIS – Business Process Modeling, Springer, 2000.  
[6]  D. Neiger and L. Churilov, Goal-Oriented Business Process Modeling with EPCs 

and Value-Focused Thinking, 2004b, pp. 98-115. 
[7]  S. Nurcan, A. Etien, R. Kaab and I. Zouka, A Strategy-Driven Business Process 

Modelling Approach, 6 ed., vol. 11, 2005, pp. 628-649. 
[8]  H. Kwan Hee, C. Sang Hyun, J. G. Kang and G. Lee, Performance-centric business 

activity monitoring framework for continuous process improvement, United 
Kingdom: World Scientific and Engineering Academy and Society (WSEAS), 
2010, pp. 40-45. 

[9]  P.   Kueng   and   P.   Kawalek,   “Goal-based business process models: creation and 
evaluation,”  In Business Process Management Journal 3, pp. pp. 17-38, 1997.  

[10]  P. Johnson, E. Johansson and T. Sommestad, A Tool for Enterprise Architecture 
Analysis, Annapolis USA, 2007.  

[11]  M.-E. Iacob and H. Jonkers, Quantitative Analysis of Enterprise Architectures, 
Geneva, Switzerland, 2005, pp. 239-252. 

[12]  P. Soffer and Y. Wand, On the Notion of Softgoals in Business Process Modeling, 
vol. 11, Emerald Group Publishing Limited, 2005, p. 663– 679. 

[13]  M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto for 
Business Revolution, London, England: Nicholas Brealey Publishing, 1993.  

[14]  S. Mansar and H. Reijers, Best Practices in Business Process Redesign: Use and 
Impact, vol. 13, 2007, pp. 193-213. 

[15]  The   Object   Management   Group   (OMG),   “Business   Process   Maturity   Model  
(BPMM),”   2008.   [Online].   Available: URL http://www.omg.org. 
http://www.omg.org. 

[16]  J. vom Brocke and M. (. Rosemann, Handbook on Business Process Management 2 
- Strategic Alignment, Governance, People and Culture, Springer, 2010.  

[17]  W. M. P. van der Aalst, Process Mining - Discovery, Conformance and 
Enhancement of Business Processes, vol. 1, Springer, 2011.  

[18]  J. Kolár, Business Activity Monitoring, Masaryk University, 2009.  
[19]  D.   Grigori,   F.   Casati   and   M.   Castellanos,   “Business   Process   Intelligence,”  

Computers in Industry, vol. 53, no. 3, pp. 321-343, 2004.  
[20]  J.  Bubenko,  A.  Persson  and  J.  Stirna,  “D3  Appendix  B:  EKD  User  Guide,”  Royal  

Institute of Technology (KTH) and Stockholm University, Stockholm, Sweden, 
2001. 

[21]  D. Quartel, W. Engelsman, H. Jonkers and M. v. Sinderen, A Goal-Oriented 



54 Evellin Cardoso

Requirements Modelling Language for Enterprise, Auckland, New Zealand: IEEE 
Computer Society, 2009.  

[22]  V. Popova and A. Sharpanskykh, Formal goal-based modeling of organizations, 
INSTICC Press, 2008.  

[23]  Object Management Group (OMG), Business Motivation Model (BMM), 2008.  
[24]  C. Pedrinaci, I. Markovic, F. Hasibether and J. Domingue, Strategy-Driven 

Business Process Analysis, 2009, pp. 169-180. 
[25]  A. Dardenne, A. van Lamsweerde and S. Fiskas, Goal Directed Requirements 

Acquisition, vol. 20, 1993, pp. 3-50. 
[26]  ISO - International Organization for Standard, Information technology — Open 

Distributed Processing — Use of UML for ODP system specifications, 2008.  
[27]  W. Engelsman and R. Wieringa, Goal-oriented requirements engineering and 

enterprise architecture: Two case studies and some lessons learned, vol. 7195 of 
Lecture Notes in Computer Science, London, UK: Springer Verlag, 2012, p. 306–
320. 

[28]  I. Markovic and M. Kowalkiewicz, Linking Business Goals to Process Models in 
Semantic Business Process Modeling, Munich, Germany, 2008, pp. 332-338. 

[29]  British   Ministry   of   Defence,   “MOD Architecture Framework (MODAF)”, 2005. 
http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/InformationManag
ement/MODAF. [Accessed 16 02 2013]. 

[30]  USA Department of Defense, DoD Architecture Framework version 1.5 Volume I: 
Definitions and Guidelines, 2007.  

[31]  P. Halleux, L. Mathieu and B. Andersson, A Method to Support the Alignment of 
Business Models and Goal Models, Montpellier, France: CEUR Workshop 
Proceedings, 2008, pp. 120-134. 

[32]  G. Koliadis, A. Vranesevic, M. Bhuiyan, A. Krishna and A. Ghose, A Combined 
Approach for Supporting the Business Process Model Lifecycle, Kuala Lumpur, 
Malaysia, 2006a.  

[33]  Y. Lin, Semantic Annotation for Process Models: Facilitating Process Knowledge 
Management via Semantic Interoperability, Trondheim, Norway, 2008.  

[34]  E.  Cardoso,  J.  P.  A.  Almeida  and  R.  Guizzardi,  “Analyzing  the  Relations  between  
Strategic and Operational Aspects of an Enterprise: Towards an Ontology-based 
Approach,”   International Journal of Organizational Design and Engineering 
(IJODE), 2012, vol. 2, no. 3, pp. 271 - 294, 2012.  

[35]  G. Guizzardi, Ontological Foundations for Structural Conceptual Models, 
University of Twente, The Netherlands, 2005.  

[36]  M. Pesic, Business process management maturity model and Six Sigma: An 
integrated approach for easier networking, Sarajevo: Springer, 2009.  

[37]  A. Teka, Analysis of indirect influence relations in goal-oriented requirements 
engineering, Electrical Engineering, Mathematics and Computer Science (EEMCS), 
University of Twente , 2012.  

 



Author Index

Amme, Wolfram, 1

Becker, Jörg, 17
Breitenbücher, Uwe, 27
Breuker, Dominic, 17

Cardoso, Evellin, 47

Demont, Christoph, 27

Elsafie, Abeer, 43

Geiger, Matthias, 39

Heinze, Thomas, 1
Herzberg, Nico, 20

Kopp, Oliver, 9, 24, 27

Leymann, Frank, 9, 24, 27

Mainka, Christian, 43
Meyer, Andreas, 20
Moser, Simon, 1

Prinz, Thomas, 31

Schwenk, Jörg, 43

Wagner, Sebastian, 9
Wettinger, Johannes, 24, 27
Wirtz, Guido, 39


